Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(47): eadg6810, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38000023

ABSTRACT

Distinct from the dynamical phase, in a cyclic evolution, a system's state may acquire an additional component, a.k.a. geometric phase. Recently, it has been demonstrated that geometric phases can be induced by a sequence of generalized measurements implemented on a single qubit. Furthermore, it has been predicted that these geometric phases may exhibit a topological transition as a function of the measurement strength. We demonstrate and study this transition experimentally by using an optical platform where the qubit is represented by the polarization of light and the weak measurement is performed by means of coupling with the spatial degree of freedom. Our protocol can be interpreted in terms of environment-induced geometric phases, whose values are topologically determined by the environment-system coupling strength. Our results show that the two limits of geometric phase induced by sequences of either weak or projective measurements are topologically distinct.

2.
Phys Rev Lett ; 127(17): 170401, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34739293

ABSTRACT

Geometrical dephasing is distinct from dynamical dephasing in that it depends on the trajectory traversed, hence it reverses its sign upon flipping the direction in which the path is traced. Here we study sequences of generalized (weak) measurements that steer a system in a closed trajectory. The readout process is marked by fluctuations, giving rise to dephasing. Rather than classifying the latter as "dynamical" and "geometrical," we identify a contribution which is invariant under reversing the sequence ordering and, in analogy with geometrical dephasing, one which flips its sign upon the reversal of the winding direction, possibly resulting in partial suppression of dephasing (i.e., "coherency enhancement"). This dephasing asymmetry (under winding reversal) is a manifestation of intrinsic chirality, which weak measurements can (and generically do) possess. Furthermore, the dephasing diverges at certain protocol parameters, marking topological transitions in the measurement-induced phase factor.

3.
Proc Natl Acad Sci U S A ; 117(11): 5706-5713, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32123099

ABSTRACT

The state of a quantum system, adiabatically driven in a cycle, may acquire a measurable phase depending only on the closed trajectory in parameter space. Such geometric phases are ubiquitous and also underline the physics of robust topological phenomena such as the quantum Hall effect. Equivalently, a geometric phase may be induced through a cyclic sequence of quantum measurements. We show that the application of a sequence of weak measurements renders the closed trajectories, hence the geometric phase, stochastic. We study the concomitant probability distribution and show that, when varying the measurement strength, the mapping between the measurement sequence and the geometric phase undergoes a topological transition. Our finding may impact measurement-induced control and manipulation of quantum states-a promising approach to quantum information processing. It also has repercussions on understanding the foundations of quantum measurement.

4.
Phys Rev Lett ; 125(25): 256803, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33416348

ABSTRACT

Studies of energy flow in quantum systems complement the information provided by common conductance measurements. The quantum limit of heat flow in one-dimensional ballistic modes was predicted, and experimentally demonstrated, to have a universal value for bosons, fermions, and fractionally charged anyons. A fraction of this value is expected in non-Abelian states; harboring counterpropagating edge modes. In such exotic states, thermal-energy relaxation along the edge is expected, and can shed light on their topological nature. Here, we introduce a novel experimental setup that enables a direct observation of thermal-energy relaxation in chiral 1D edge modes in the quantum Hall effect. Edge modes, emanating from a heated reservoir, are partitioned by a quantum point contact (QPC) constriction, which is located at some distance along their path. The resulting low frequency noise, measured downstream, allows determination of the "effective temperature" of the edge mode at the location of the QPC. An expected, prominent energy relaxation was found in hole-conjugate states. However, relaxation was also observed in particlelike states, where heat is expected to be conserved. We developed a model, consisting of distance-dependent energy loss, which agrees with the observations; however, we cannot exclude energy redistribution mechanisms, which are not accompanied with energy loss.

5.
Phys Rev Lett ; 123(6): 060405, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31491147

ABSTRACT

We study the adiabatic dynamics of degenerate quantum states induced by loop paths in a control parameter space. The latter correspond to noisy trajectories if the system is weakly coupled to environmental modes. On top of conventional dynamic dephasing, we find a universal non-Abelian geometric dephasing (NAGD) contribution and express it in terms of the non-Abelian Berry connection and curvature. We show that NAGD implies either decay or amplification of coherences as compared to the coherences when only dynamic dephasing is present. The full NAGD matrix structure can be probed through interference experiments. We outline such a detection scheme for modified Majorana braiding setups.

6.
Phys Rev Lett ; 120(22): 226802, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29906130

ABSTRACT

We consider charge pumping in a system of parafermions, implemented at fractional quantum Hall edges. Our pumping protocol leads to a noisy behavior of the pumped current. As the adiabatic limit is approached, not only does the noisy behavior persist but the counting statistics of the pumped current becomes robust and universal. In particular, the resulting Fano factor is given in terms of the system's topological degeneracy and the pumped quasiparticle charge. Our results are also applicable to the more conventional Majorana fermions.

SELECTION OF CITATIONS
SEARCH DETAIL
...