Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Process Saf Environ Prot ; 142: 191-202, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32572308

ABSTRACT

It is necessary to disinfect treated wastewater prior to discharge to reduce exposure risks to humans and the environment. The currently practiced wastewater disinfection technologies are challenged by toxic by-products, chemicals and energy demand, a range of effectiveness limitations, among other concerns. An effective, eco-friendly, and energy-efficient alternative disinfection technique is desirable to modernize and enhance wastewater treatment operations. Copper and nickel micro-structured metal foams, and a conventional copper mesh, were evaluated as disinfecting surfaces for treating secondary-treated wastewater contaminated with coliform bacteria. The micro-structured copper foam was adopted for scale-up study, due to its stable and satisfactory bactericidal performance obtained over a wide range of bacterial concentrations and metal-to-liquid ratios. Three scales of experiments, using two types of reactor designs, were performed using municipal wastewater to determine the optimal scale-up factors: small lab-scale batch reactor, intermediate lab-scale batch reactor, and pilot-scale continuous tubular reactor experiments. The performance was evaluated with the aim of minimizing metal material requirement with respect to bactericidal efficiency and leaching risks at all scales. Copper foam, at or above optimal conditions, consistently inactivated over 95 % of total coliforms, fecal coliforms and E.coli in wastewater at various scales, and leachate copper concentrations were determined to be below Canadian guideline values for outfall. This study successfully implemented the "structure" strategy of process intensification, and opens up the possibility to apply micro-structured copper foam in a range of other water disinfection systems, from pre-treatment to point-of-use, and should thus become a topic of further research.

2.
J Pharmacol Exp Ther ; 337(1): 92-101, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21205915

ABSTRACT

Gene delivery using an adenoviral system has been effective in introducing therapeutic proteins in vitro and in vivo. This study tested the feasibility of using adenovirus to deliver clinically relevant amounts of butyrylcholinesterase (BChE), a proven bioscavenger of nerve agents. The adenovirus construct expressed full-length mouse BChE. Mice were injected with a single dose of adenovirus (1.5 × 10(10) infectious units) in the tail vein; plasma was collected through day 11 and assayed for BChE activity. Maximum activity, representing a 300- to 3400-fold increase over baseline, was found on day 4. Expression levels returned to baseline by day 10. Nondenaturing gel electrophoresis showed the recombinant BChE was a dimer that could be converted to tetramers by addition of polyproline. The toxic compounds chosen for protection studies were positively charged organophosphorus agents, echothiophate, and O-ethyl-S-2-N,N-diisopropylaminoethyl methylphosphonothiolate (VX). Mice containing elevated blood levels of BChE (300- to 3,000-fold over the control mice) were challenged with incremental doses of echothiophate or VX. Mice showed no signs of toxicity and were protected from up to 30× LD(50) dose of echothiophate and 5× LD(50) dose of VX. A good correlation was observed between tolerated echothiophate dose and plasma BChE levels at time of challenge. The absolute increases in levels of circulating BChE and the sustained nature of the response resulted in a very high enzyme concentration, deemed critical in acute toxicity (5× LD(50) or more) scenarios. These results suggest that gene-delivered BChE is a prophylactic and affords protection equivalent to that of a multimilligram injection of the same.


Subject(s)
Butyrylcholinesterase/administration & dosage , Butyrylcholinesterase/genetics , Chemical Warfare Agents/toxicity , Gene Transfer Techniques , Organophosphorus Compounds/antagonists & inhibitors , Organophosphorus Compounds/toxicity , Adenoviridae/genetics , Animals , Butyrylcholinesterase/blood , Female , HEK293 Cells , Humans , Mice , Mice, 129 Strain , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...