Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 19(7): 1193-1204, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30839006

ABSTRACT

The development of drugs to treat cancer is hampered by the inefficiency of translating pre-clinical in vitro monoculture and mouse studies into clinical benefit. There is a critical need to improve the accuracy of evaluating pre-clinical drug efficacy through the development of more physiologically relevant models. In this study, a human triculture 3D in vitro tumor microenvironment system (TMES) was engineered to accurately mimic the tumor microenvironment. The TMES recapitulates tumor hemodynamics and biological transport with co-cultured human microvascular endothelial cells, pancreatic ductal adenocarcinoma, and pancreatic stellate cells. We demonstrate that significant tumor cell transcriptomic changes occur in the TMES that correlate with the in vivo xenograft and patient transcriptome. Treatment with therapeutically relevant doses of chemotherapeutics yields responses paralleling the patients' clinical responses. Thus, this model provides a unique platform to rigorously evaluate novel therapies and is amenable to using patient tumor material directly, with applicability for patient avatars.


Subject(s)
Biomimetics/methods , Carcinoma, Pancreatic Ductal/pathology , Tumor Microenvironment , Cell Proliferation/drug effects , Humans , Tumor Microenvironment/drug effects
2.
Mol Biol Cell ; 25(8): 1202-15, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24523287

ABSTRACT

Maintaining the Ran GTPase at a proper concentration in the nucleus is important for nucleocytoplasmic transport. Previously we found that nuclear levels of Ran are reduced in cells from patients with Hutchinson-Gilford progeria syndrome (HGPS), a disease caused by constitutive attachment of a mutant form of lamin A (termed progerin) to the nuclear membrane. Here we explore the relationship between progerin, the Ran GTPase, and oxidative stress. Stable attachment of progerin to the nuclear membrane disrupts the Ran gradient and results in cytoplasmic localization of Ubc9, a Ran-dependent import cargo. Ran and Ubc9 disruption can be induced reversibly with H2O2. CHO cells preadapted to oxidative stress resist the effects of progerin on Ran and Ubc9. Given that HGPS-patient fibroblasts display elevated ROS, these data suggest that progerin inhibits nuclear transport via oxidative stress. A drug that inhibits pre-lamin A cleavage mimics the effects of progerin by disrupting the Ran gradient, but the effects on Ran are observed before a substantial ROS increase. Moreover, reducing the nuclear concentration of Ran is sufficient to induce ROS irrespective of progerin. We speculate that oxidative stress caused by progerin may occur upstream or downstream of Ran, depending on the cell type and physiological setting.


Subject(s)
Hydrogen Peroxide/pharmacology , Nuclear Proteins/metabolism , Oxidative Stress , Progeria/pathology , Protein Precursors/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , ran GTP-Binding Protein/metabolism , Active Transport, Cell Nucleus , Animals , CHO Cells , COS Cells , Cells, Cultured , Chlorocebus aethiops , Cricetulus , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Fibroblasts , HeLa Cells , Humans , Lamin Type A , Lopinavir/pharmacology , Membrane Potential, Mitochondrial , Nuclear Envelope/metabolism , Protein Binding , RNA Interference , RNA, Small Interfering , Sumoylation , ran GTP-Binding Protein/genetics
3.
Adv Exp Med Biol ; 773: 309-22, 2014.
Article in English | MEDLINE | ID: mdl-24563354

ABSTRACT

Tpr is a prominent architectural component of the nuclear pore complex that forms the basket-like structure on the nucleoplasmic side of the pore. Tpr, which stands for translocated promoter region, was originally described in the context of oncogenic fusions with the receptor tyrosine kinases Met, TRK, and Raf. Tpr has been since implicated in a variety of nuclear functions, including nuclear transport, chromatin organization, regulation of transcription, and mitosis. More recently, Tpr function has been linked to events including p53 signaling and premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS). Here we provide an overview of the various processes that involve Tpr, and discuss how the levels and localization of a single protein can affect diverse pathways in the cell.


Subject(s)
Aging/physiology , Nuclear Pore Complex Proteins/physiology , Nuclear Pore/physiology , Proto-Oncogene Proteins/physiology , Humans , Oncogene Proteins/physiology , Spindle Apparatus
4.
Mol Cell Biol ; 33(24): 4766-78, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24100013

ABSTRACT

The androgen receptor (AR) has critical functions as a transcription factor in both normal and cancer cells, but the specific mechanisms that regulate its nuclear localization are not well defined. We found that an AR mutation commonly reported in prostate cancer generates an androgen-independent gain of function for nuclear import. The substitution, Thr877Ala, is within the ligand-binding domain, but the nuclear import gain of function is mediated by the bipartite nuclear localization signal (NLS) spanning the DNA-binding domain (DBD) and hinge region. Bipartite NLS activity depends on the structure provided by the DBD, and protein interactions with the bipartite NLS are repressed by the hinge region. The bipartite NLS is recognized by importin 7, a nuclear import receptor for several proteins. Importin 7 binding to AR, however, inhibits import by shielding the bipartite NLS. Androgen binding relieves the inhibition by inducing a switch that promotes exchange of importin 7 for karyopherin alpha import receptors. Importin 7 contributes to the regulation of AR import by restraining import until androgen is detected in the cytoplasm.


Subject(s)
Amino Acid Substitution , Androgens/physiology , Cell Nucleus/metabolism , Karyopherins/metabolism , Receptors, Androgen/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Active Transport, Cell Nucleus , Amino Acid Motifs , Animals , COS Cells , Chlorocebus aethiops , Cytoplasm/metabolism , HeLa Cells , Humans , Male , Metribolone/pharmacology , Models, Molecular , Nuclear Localization Signals/genetics , Prostatic Neoplasms , Protein Binding , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Reticulocytes/metabolism , Testosterone Congeners/pharmacology
5.
J Cell Biol ; 201(4): 541-57, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23649804

ABSTRACT

The RanGTPase acts as a master regulator of nucleocytoplasmic transport by controlling assembly and disassembly of nuclear transport complexes. RanGTP is required in the nucleus to release nuclear localization signal (NLS)-containing cargo from import receptors, and, under steady-state conditions, Ran is highly concentrated in the nucleus. We previously showed the nuclear/cytoplasmic Ran distribution is disrupted in Hutchinson-Gilford Progeria syndrome (HGPS) fibroblasts that express the Progerin form of lamin A, causing a major defect in nuclear import of the protein, translocated promoter region (Tpr). In this paper, we show that Tpr import was mediated by the most abundant import receptor, KPNA2, which binds the bipartite NLS in Tpr with nanomolar affinity. Analyses including NLS swapping revealed Progerin did not cause global inhibition of nuclear import. Rather, Progerin inhibited Tpr import because transport of large protein cargoes was sensitive to changes in the Ran nuclear/cytoplasmic distribution that occurred in HGPS. We propose that defective import of large protein complexes with important roles in nuclear function may contribute to disease-associated phenotypes in Progeria.


Subject(s)
Cell Nucleus/metabolism , Nuclear Pore Complex Proteins/metabolism , Progeria/genetics , Proto-Oncogene Proteins/metabolism , alpha Karyopherins/metabolism , ran GTP-Binding Protein/metabolism , Active Transport, Cell Nucleus , Amino Acid Motifs , Amino Acid Sequence , Fibroblasts/metabolism , HeLa Cells , Humans , Lamin Type A , Molecular Sequence Data , Nuclear Localization Signals , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/metabolism , Phenotype , Progeria/metabolism , Promoter Regions, Genetic , Protein Precursors/metabolism , Proto-Oncogene Proteins/genetics , alpha Karyopherins/genetics
6.
Mol Cell Biol ; 31(16): 3378-95, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21670151

ABSTRACT

The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways.


Subject(s)
Active Transport, Cell Nucleus , Nuclear Lamina/pathology , Progeria/pathology , Ubiquitin-Conjugating Enzymes/metabolism , ran GTP-Binding Protein/metabolism , Cell Cycle Proteins , Guanine Nucleotide Exchange Factors , Humans , Nuclear Proteins , Progeria/metabolism , Sumoylation , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors
7.
Gene Expr Patterns ; 9(1): 37-42, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18783736

ABSTRACT

Muscle development involves the specification and morphogenesis of muscle fibers that attach to tendons. After attachment, muscles and tendons then function as an integrated unit to transduce force to the skeletal system and stabilize joints. The attachment site is the myotendinous junction, or MTJ, and is the primary site of force transmission. We find that attachment of fast-twitch myofibers to the MTJ correlates with the formation of novel microenvironments within the MTJ. The expression or activation of two proteins involved in anchoring the intracellular cytoskeleton to the extracellular matrix, Focal adhesion kinase (Fak) and beta-dystroglycan is up-regulated. Conversely, the extracellular matrix protein Fibronectin (Fn) is down-regulated. This degradation of Fn as fast-twitch fibers attach to the MTJ results in Fn protein defining a novel microenvironment within the MTJ adjacent to slow-twitch, but not fast-twitch, muscle. Interestingly, however, Fak, laminin, Fn and beta-dystroglycan concentrate at the MTJ in mutants that do not have slow-twitch fibers. Taken together, these data elucidate novel and dynamic microenvironments within the MTJ and indicate that MTJ morphogenesis is spatially and temporally complex.


Subject(s)
Embryo, Nonmammalian/metabolism , Morphogenesis , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/embryology , Tendons/embryology , Zebrafish/embryology , Animals , Dystroglycans/metabolism , Environment , Fibronectins/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Gene Expression Regulation, Developmental , Immunoenzyme Techniques , Laminin/metabolism
8.
PLoS Genet ; 4(10): e1000219, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18833302

ABSTRACT

Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction (MTJ). In vertebrates, a great deal is known about muscle specification as well as how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate long muscle fibers from short cells and the molecular factors that limit elongation are unknown. We show that zebrafish fast muscle fiber morphogenesis consists of three discrete phases: short precursor cells, intercalation/elongation, and boundary capture/myotube formation. In the first phase, cells exhibit randomly directed protrusive activity. The second phase, intercalation/elongation, proceeds via a two-step process: protrusion extension and filling. This repetition of protrusion extension and filling continues until both the anterior and posterior ends of the muscle fiber reach the MTJ. Finally, both ends of the muscle fiber anchor to the MTJ (boundary capture) and undergo further morphogenetic changes as they adopt the stereotypical, cylindrical shape of myotubes. We find that the basement membrane protein laminin is required for efficient elongation, proper fiber orientation, and boundary capture. These early muscle defects in the absence of either lamininbeta1 or laminingamma1 contrast with later dystrophic phenotypes in lamininalpha2 mutant embryos, indicating discrete roles for different laminin chains during early muscle development. Surprisingly, genetic mosaic analysis suggests that boundary capture is a cell-autonomous phenomenon. Taken together, our results define three phases of muscle fiber morphogenesis and show that the critical second phase of elongation proceeds by a repetitive process of protrusion extension and protrusion filling. Furthermore, we show that laminin is a novel and critical molecular cue mediating fiber orientation and limiting muscle cell length.


Subject(s)
Image Processing, Computer-Assisted , Models, Theoretical , Morphogenesis , Muscle, Skeletal/growth & development , Zebrafish/growth & development , Animals , Laminin/metabolism , Muscle Fibers, Skeletal/chemistry , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/chemistry , Muscle, Skeletal/embryology , Muscle, Skeletal/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
9.
Dev Dyn ; 237(9): 2542-53, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18729220

ABSTRACT

After somitogenesis, skeletal muscle precursors elongate into muscle fibers that anchor to the somite boundary, which becomes the myotome boundary. Fibronectin (Fn) is a major component of the extracellular matrix in both boundaries. Although Fn is required for somitogenesis, effects of Fn disruption on subsequent muscle development are unknown. We show that fn knockdown disrupts myogenesis. Muscle morphogenesis is more disrupted in fn morphants than in a mutant where initial somite boundaries did not form, aei/deltaD. We quantified this disruption using the two-dimensional Wavelet-Transform Modulus Maxima method, which uses the variation of intensity in an image with respect to the direction considered to characterize the structure in a cell lattice. We show that fibers in fn morphants are less organized than in aei/deltaD mutant embryos. Fast- and slow-twitch muscle lengths are also more frequently uncoupled. These data suggest that fn may function to regulate fiber organization and limit fast-twitch muscle fiber length.


Subject(s)
Fibronectins/metabolism , Muscle Development/physiology , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Fibronectins/genetics , Gene Expression Regulation, Developmental , Immunohistochemistry , In Situ Hybridization , Models, Biological , Muscle Development/genetics , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Somites/embryology , Somites/metabolism , Zebrafish/embryology , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...