Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Soc Rev ; 35(9): 790-8, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16936927

ABSTRACT

Single-walled carbon nanotubes possess unique properties that make them a potentially ideal material for chemical sensing. However, their extremely small size also presents technical challenges for realizing a practical sensor technology. In this tutorial review we explore the transduction physics by which the presence of molecular adsorbates is converted into a measurable electronic signal, and we identify solutions to the problems such as nanotube device fabrication and large, low-frequency noise that have inhibited commercial sensor development. Finally, we examine strategies to provide the necessary chemical specificity to realize a nanotube-based detection system for trace-level chemical vapor detection.

2.
Science ; 307(5717): 1942-5, 2005 Mar 25.
Article in English | MEDLINE | ID: mdl-15790850

ABSTRACT

We show that the capacitance of single-walled carbon nanotubes (SWNTs) is highly sensitive to a broad class of chemical vapors and that this transduction mechanism can form the basis for a fast, low-power sorption-based chemical sensor. In the presence of a dilute chemical vapor, molecular adsorbates are polarized by the fringing electric fields radiating from the surface of a SWNT electrode, which causes an increase in its capacitance. We use this effect to construct a high-performance chemical sensor by thinly coating the SWNTs with chemoselective materials that provide a large, class-specific gain to the capacitance response. Such SWNT chemicapacitors are fast, highly sensitive, and completely reversible.

SELECTION OF CITATIONS
SEARCH DETAIL
...