Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 11: 735820, 2021.
Article in English | MEDLINE | ID: mdl-34604070

ABSTRACT

The purpose of ex vivo drug screening in the context of precision oncology is to serve as a functional diagnostic method for therapy efficacy modeling directly on patient-derived tumor cells. Here, we report a case study using integrated multiomics ex vivo drug screening approach to assess therapy efficacy in a rare metastatic squamous cell carcinoma of the parotid gland. Tumor cells isolated from lymph node metastasis and distal subcutaneous metastasis were used for imaging-based single-cell resolution drug screening and reverse-phase protein array-based drug screening assays to inform the treatment strategy after standard therapeutic options had been exhausted. The drug targets discovered on the basis of the ex vivo measured drug efficacy were validated with histopathology, genomic profiling, and in vitro cell biology methods, and targeted treatments with durable clinical responses were achieved. These results demonstrate the use of serial ex vivo drug screening to inform adjuvant therapy options prior to and during treatment and highlight HER2 as a potential therapy target also in metastatic squamous cell carcinoma of the salivary glands.

2.
PLoS One ; 15(9): e0238594, 2020.
Article in English | MEDLINE | ID: mdl-32911489

ABSTRACT

Intratumor Heterogeneity (ITH) is a functionally important property of tumor tissue and may be involved in drug resistance mechanisms. Although descriptions of ITH can be traced back to very early reports about cancer tissue, mechanistic investigations are still limited by the precision of analysis methods and access to relevant tissue sources. PDX models have provided a reproducible source of tissue with at least a partial representation of naturally occurring ITH. We investigated the properties of phenotypically distinct cell populations by Fluorescence activated cell sorting (FACS) tissue derived cells from multiple tumors from a triple negative breast cancer patient derived xenograft (PDX) model. We subsequently subjected each population to in depth gene expression analysis. Our findings suggest that process related gene expression changes (caused by tissue dissociation and FACS sorting) are restricted to Immediate Early Genes (IEGs). This allowed us to discover highly reproducible gene expression profiles of distinct cellular compartments identifiable by cell surface markers in this particular tumor model. Within the context of data from a previously published model our work suggests that gene expression profiles associated with hypoxia, stemness and drug resistance may reside in tumor subpopulations predictably growing in PDX models. This approach provides a novel opportunity for prospective mechanistic studies of ITH.


Subject(s)
Gene Expression Regulation, Neoplastic , Transcriptome , Triple Negative Breast Neoplasms/genetics , Animals , Disease Models, Animal , Female , Flow Cytometry , Gene Expression Profiling , Humans , Mice, Inbred NOD , Mice, SCID , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
4.
Oncotarget ; 10(38): 3592-3604, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31217895

ABSTRACT

Barrett's esophagus (BE) is metaplasia of the squamous epithelium to a specialized columnar epithelium. BE progresses through low- and high-grade dysplasia before developing into esophageal adenocarcinoma. The BE microenvironment is not well defined. We compare 12 human clinical BE and adjacent normal squamous epithelium biopsies using single cell immunophenotyping by flow cytometry. A cassette of 19 epithelial and immune cell markers was used to detect differences between cellular compartments in normal and BE tissues. We found that the BE microenvironment has an immunological landscape distinct from adjacent normal epithelium. BE has an increased percentage of epithelial cells with a concomitant decrease in the percentage of immune cells, accompanied by a shift in the immune landscape from a predominantly T cell rich microenvironment in normal tissue to a B cell rich landscape in BE tissue. Hierarchical clustering separates BE and normal samples into two discrete groups based upon our 19-marker panel, but also reveals unexpected, shared phenotypes for three patients. Our results suggest that flow based single cell analysis may have the potential for revealing clinically relevant differences between BE and normal adjacent tissue, and that surface immunophenotypes could identify specific subpopulations from dysplastic tissue for further investigation.

5.
Mol Cancer Res ; 15(4): 429-438, 2017 04.
Article in English | MEDLINE | ID: mdl-28039356

ABSTRACT

Cancer tissue functions as an ecosystem of a diverse set of cells that interact in a complex tumor microenvironment. Genomic tools applied to biopsies in bulk fail to account for this tumor heterogeneity, whereas single-cell imaging methods limit the number of cells which can be assessed or are very resource intensive. The current study presents methods based on flow cytometric analysis and cell sorting using known cell surface markers (CXCR4/CD184, CD24, THY1/CD90) to identify and interrogate distinct groups of cells in triple-negative breast cancer clinical biopsy specimens from patient-derived xenograft (PDX) models. The results demonstrate that flow cytometric analysis allows a relevant subgrouping of cancer tissue and that sorting of these subgroups provides insights into cancer cell populations with unique, reproducible, and functionally divergent gene expression profiles. The discovery of a drug resistance signature implies that uncovering the functional interaction between these populations will lead to deeper understanding of cancer progression and drug response.Implications: PDX-derived human breast cancer tissue was investigated at the single-cell level, and cell subpopulations defined by surface markers were identified which suggest specific roles for distinct cellular compartments within a solid tumor. Mol Cancer Res; 15(4); 429-38. ©2016 AACR.


Subject(s)
Flow Cytometry/methods , Gene Expression Profiling/methods , Immunophenotyping/methods , Single-Cell Analysis/methods , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Animals , CD24 Antigen/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Transplantation , Phenotype , Receptors, CXCR4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...