Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 85(10): 2840-2853, 2022 May.
Article in English | MEDLINE | ID: mdl-35638791

ABSTRACT

Digital Twins (DTs) are on the rise as innovative, powerful technologies to harness the power of digitalisation in the WRRF sector. The lack of consensus and understanding when it comes to the definition, perceived benefits and technological needs of DTs is hampering their widespread development and application. Transitioning from traditional WRRF modelling practice into DT applications raises a number of important questions: When is a model's predictive power acceptable for a DT? Which modelling frameworks are most suited for DT applications? Which data structures are needed to efficiently feed data to a DT? How do we keep the DT up to date and relevant? Who will be the main users of DTs and how to get them involved? How do DTs push the water sector to evolve? This paper provides an overview of the state-of-the-art, challenges, good practices, development needs and transformative capacity of DTs for WRRF applications.

2.
Environ Monit Assess ; 194(5): 389, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35445887

ABSTRACT

Prediction of influent characteristics, before any treatment takes place, is of great importance to the operation and management of wastewater treatment plants (WWTPs). In this study, four machine-learning models, including multilayer perceptron (MLP), long short-term memory network (LSTM), K-nearest neighbour (KNN), and random forest (RF), are introduced to utilize real-time wastewater data from three WWTPs in North America (i.e., Tres Rios, Woodward, and one confidential plant) for predicting hourly influent characteristics. Input variables are selected using an autocorrelation analysis and a variable importance measure from RF. Both univariate and multivariate analyses are investigated to improve model accuracy. The performances of one- and multiple-step-ahead models are compared. With a short prediction horizon, all the models derived from both univariate and multivariate analyses show excellent performance. It was found that the performance deterioration as the prediction horizon expands could be mitigated significantly by including extra variables, such as meteorological variables. This work can provide valuable support for the high-temporal-resolution prediction of wastewater influent characteristics for WWTPs. The proposed models can also bridge the gap between data and decision-making in the wastewater sector.


Subject(s)
Wastewater , Water Purification , Environmental Monitoring , Machine Learning , Neural Networks, Computer
3.
Water Environ Res ; 93(10): 2084-2096, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33991363

ABSTRACT

Anaerobic digestion (AD) is a biological treatment process to stabilize organic solids and produce biogas. If present, sulfate is reduced to sulfide by anaerobic sulfate-reducing bacteria and the sulfide can be toxic to anaerobic microorganisms. Here, the effect of high initial sulfate concentration on AD of wastewater sludge was investigated using lab-scale batch experiments. Additionally, a systematic mathematical modeling approach was applied for insight into the experimental results. Cumulative biogas and methane production decreased with increasing initial sulfate doses (0-3.300 mg S L-1 ). The correlation between the sulfate dose and methane production was consistent with theoretical predictions and model results, indicating no toxic effect of sulfide on methane production. The carbon dioxide content in the biogas decreased linearly with the increasing sulfate dose, which is consistent with the model-predicted behavior of the bicarbonate and hydrogen sulfide buffering system. The examined high sulfate concentrations resulted in no clear negative effects on the COD removal or VSS destruction of the wastewater sludge, indicating negligible inhibition by sulfide toxicity. Even considering the possibility of ferrous sulfide precipitation and the low model estimates of residual sulfide concentration the residual sulfide concentration was higher than reported concentrations that trigger process inhibition. PRACTITIONER POINTS: The effect of sulfate loading on anaerobic digestion of waste activated sludge was characterized. The stoichiometry of sulfate reduction allows accurate prediction of CH4  loss. High sulfate levels (up to 3300 mg/L as S) did not affect COD/VSS removal. Sulfide formation increases effluent COD; often misinterpreted as sulfide toxicity. Correcting COD for sulfide's contributions is crucial for results interpretation.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Bioreactors , Methane , Sulfates , Waste Disposal, Fluid
4.
Water Sci Technol ; 80(2): 243-253, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31537760

ABSTRACT

Wastewater flow forecasting is key for proper management of wastewater treatment plants (WWTPs). However, to predict the amount of incoming wastewater in WWTPs, wastewater engineers face challenges arising from numerous complexities and uncertainties, such as the nonlinear precipitation-runoff relationships in combined sewer systems, unpredictability due to aging infrastructure, and frequently inconsistent data quality. To address such challenges, a time series analysis model (i.e., the autoregressive integrated moving average, ARIMA) and an artificial neural network model (i.e., the multilayer perceptron neural network, MLPNN) were developed for predicting wastewater inflow. A case study of the Barrie Wastewater Treatment Facility in Barrie, Canada, was carried out to demonstrate the performance of the proposed models. Fifteen-minute flow data over a period of 1 year were collected, and the resampled daily flow data were used to train and validate the developed models. The model performances were examined using root mean square error, mean absolute percentage error, coefficient of determination, and Nash-Sutcliffe efficiency. The results indicate that both models provided reliable forecasts, while ARIMA showed a slightly better performance than MLPNN in this case study. The proposed models can provide useful decision support for the optimization and management of WWTPs.


Subject(s)
Models, Statistical , Neural Networks, Computer , Wastewater/statistics & numerical data , Water Movements , Canada , Forecasting
5.
Water Res X ; 2: 100024, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-31194023

ABSTRACT

Microalgal and cyanobacterial resource recovery systems could significantly advance nutrient recovery from wastewater by achieving effluent nitrogen (N) and phosphorus (P) levels below the current limit of technology. The successful implementation of phytoplankton, however, requires the formulation of process models that balance fidelity and simplicity to accurately simulate dynamic performance in response to environmental conditions. This work synthesizes the range of model structures that have been leveraged for algae and cyanobacteria modeling and core model features that are required to enable reliable process modeling in the context of water resource recovery facilities. Results from an extensive literature review of over 300 published phytoplankton models are presented, with particular attention to similarities with and differences from existing strategies to model chemotrophic wastewater treatment processes (e.g., via the Activated Sludge Models, ASMs). Building on published process models, the core requirements of a model structure for algal and cyanobacterial processes are presented, including detailed recommendations for the prediction of growth (under phototrophic, heterotrophic, and mixotrophic conditions), nutrient uptake, carbon uptake and storage, and respiration.

6.
Water Sci Technol ; 79(1): 3-14, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30816857

ABSTRACT

The wastewater industry is currently facing dramatic changes, shifting away from energy-intensive wastewater treatment towards low-energy, sustainable technologies capable of achieving energy positive operation and resource recovery. The latter will shift the focus of the wastewater industry to how one could manage and extract resources from the wastewater, as opposed to the conventional paradigm of treatment. Debatable questions arise: can the more complex models be calibrated, or will additional unknowns be introduced? After almost 30 years using well-known International Water Association (IWA) models, should the community move to other components, processes, or model structures like 'black box' models, computational fluid dynamics techniques, etc.? Can new data sources - e.g. on-line sensor data, chemical and molecular analyses, new analytical techniques, off-gas analysis - keep up with the increasing process complexity? Are different methods for data management, data reconciliation, and fault detection mature enough for coping with such a large amount of information? Are the available calibration techniques able to cope with such complex models? This paper describes the thoughts and opinions collected during the closing session of the 6th IWA/WEF Water Resource Recovery Modelling Seminar 2018. It presents a concerted and collective effort by individuals from many different sectors of the wastewater industry to offer past and present insights, as well as an outlook into the future of wastewater modelling.


Subject(s)
Conservation of Water Resources/methods , Waste Disposal, Fluid/methods , Water Resources/supply & distribution , Water Supply/statistics & numerical data , Conservation of Water Resources/statistics & numerical data , Hydrodynamics , Models, Statistical , Waste Disposal, Fluid/statistics & numerical data , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...