Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 396
Filter
1.
Phys Chem Chem Phys ; 26(26): 18041-18047, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38895773

ABSTRACT

Nanostructured thermoelectric materials ideally reduce lattice thermal conductivity without harming the electrical properties. Thus, to truly improve the thermoelectric performance, the quality factor, which is proportional to the weighted mobility divided by the lattice thermal conductivity of the material, must be improved. Precipitates of In2Te3 form in the state-of-the-art Bi2Te3 with crystallographic alignment to the Bi2Te3 structure. Like epitaxy in films, this can be called endotaxy in solids. This natural epitaxy in a 3-dimensional solid is ideally situated to scatter phonons but produces minimal electronic scattering and, therefore, maintains high mobility. Here, we study the effects of In-alloying in Bi2Te3 at high In concentrations (about 4 at%), enough to produce the endotaxial microstructure. It is found that such concentrations of indium in Bi2Te3 significantly alter the electronic structure, reducing the effective mass and weighted mobility so significantly as to effectively destroy the thermoelectric properties even though the lattice thermal conductivity is successfully reduced.

2.
Adv Sci (Weinh) ; 11(24): e2308075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626376

ABSTRACT

Manipulating thermal properties of materials can be interpreted as the control of how vibrations of atoms (known as phonons) scatter in a crystal lattice. Compared to a perfect crystal, crystalline solids with defects are expected to have shorter phonon mean free paths caused by point defect scattering, leading to lower lattice thermal conductivities than those without defects. While this is true in many cases, alloying can increase the phonon mean free path in the Cd-doped AgSnSbSe3 system to increase the lattice thermal conductivity from 0.65 to 1.05 W m-1 K-1 by replacing 18% of the Sb sites with Cd. It is found that the presence of lone pair electrons leads to the off-centering of cations from the centrosymmetric position of a cubic lattice. X-ray pair distribution function analysis reveals that this structural distortion is relieved when the electronic configuration of the dopant element cannot produce lone pair electrons. Furthermore, a decrease in the Grüneisen parameter with doping is experimentally confirmed, establishing a relationship between the stereochemical activity of lone pair electrons and the lattice anharmonicity. The observed "harmonic" behavior with doping suggests that lone pair electrons must be preserved to effectively suppress phonon transport in these systems.

3.
Adv Mater ; 36(26): e2400845, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651256

ABSTRACT

Topological electronic transition is the very promising strategy for achieving high band degeneracy (NV) and for optimizing thermoelectric performance. Herein, this work verifies in p-type Mg3Sb2- xBix that topological electronic transition could be the key mechanism responsible for elevating the NV of valence band edge from 1 to 6, leading to much improved thermoelectric performance. Through comprehensive spectroscopy characterizations and theoretical calculations of electronic structures, the topological electronic transition from trivial semiconductor is unambiguously demonstrated to topological semimetal of Mg3Sb2- xBix with increasing the Bi content, due to the strong spin-orbit coupling of Bi and the band inversion. The distinct evolution of Fermi surface configuration and the multivalley valence band edge with NV of 6 are discovered in the Bi-rich compositions, while a peculiar two-step band inversion is revealed for the first time in the end compound Mg3Bi2. As a result, the optimal p-type Mg3Sb0.5Bi1.5 simultaneously obtains a positive bandgap and high NV of 6, and thus acquires the largest thermoelectric power factor of 3.54 and 6.93 µW cm-1 K-2 at 300 and 575 K, respectively, outperforming the values in other compositions. This work provides important guidance on improving thermoelectric performance of p-type Mg3Sb2- xBix utilizing the topological electronic transition.

4.
J Am Chem Soc ; 146(18): 12620-12635, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38669614

ABSTRACT

High-entropy semiconductors are now an important class of materials widely investigated for thermoelectric applications. Understanding the impact of chemical and structural heterogeneity on transport properties in these compositionally complex systems is essential for thermoelectric design. In this work, we uncover the polar domain structures in the high-entropy PbGeSnSe1.5Te1.5 system and assess their impact on thermoelectric properties. We found that polar domains induced by crystal symmetry breaking give rise to well-structured alternating strain fields. These fields effectively disrupt phonon propagation and suppress the thermal conductivity. We demonstrate that the polar domain structures can be modulated by tuning crystal symmetry through entropy engineering in PbGeSnAgxSbxSe1.5+xTe1.5+x. Incremental increases in the entropy enhance the crystal symmetry of the system, which suppresses domain formation and loses its efficacy in suppressing phonon propagation. As a result, the room-temperature lattice thermal conductivity increases from κL = 0.63 Wm-1 K-1 (x = 0) to 0.79 Wm-1 K-1 (x = 0.10). In the meantime, the increase in crystal symmetry, however, leads to enhanced valley degeneracy and improves the weighted mobility from µw = 29.6 cm2 V-1 s-1 (x = 0) to 35.8 cm2 V-1 s-1 (x = 0.10). As such, optimal thermoelectric performance can be achieved through entropy engineering by balancing weighted mobility and lattice thermal conductivity. This work, for the first time, studies the impact of polar domain structures on thermoelectric properties, and the developed understanding of the intricate interplay between crystal symmetry, polar domains, and transport properties, along with the impact of entropy control, provides valuable insights into designing GeTe-based high-entropy thermoelectrics.

5.
Mater Horiz ; 11(5): 1188-1198, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38189468

ABSTRACT

Some of the best thermoelectric (TE) materials to date are also topological insulators (TIs). While many studies have investigated the effects of topologically-protected TI surface states on TE properties, the conditions needed to realize such effects are quite different from typical operating conditions of TE devices for, e.g., power generation and room-temperature Peltier cooling. As a result, it is still unclear what properties of TIs, especially those related to the bulk band structure, are beneficial for TE performance, if any. Here, we perform high-throughput transport calculations using density functional theory to reveal that, within the same structure type, TIs tend to outperform normal insulators as TEs when properly optimized. The calculations also indicate that the TE performance is higher for TIs with strongly inverted bands. To explain these observations, we develop models based on Boltzmann transport theory which show that warping driven by band inversion, a key characteristic of TIs, is responsible for the high TE performance of TIs. We find that warping benefits the TE performance because of reduced transport mass and effectively higher valley degeneracy. Our results show that the band inversion strength is a critical property of a TI dictating the TE performance, and we suggest potential strategies to tune the inversion strength and enhance the TE performance in TIs, such as alloying and strain engineering. The study marks TIs as serious candidates for TE applications owing to band inversion-driven warping.

6.
Chem Mater ; 35(18): 7719-7729, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37780411

ABSTRACT

Low-dimensional materials have unique optical, electronic, mechanical, and chemical properties that make them desirable for a wide range of applications. Nano-scaling materials to confine transport in at least one direction is a common method of designing materials with low-dimensional electronic structures. However, bulk materials give rise to low-dimensional electronic structures when bonding is highly anisotropic. Layered Zintl phases are excellent candidates for investigation due to their directional bonding, structural variety, and tunability. However, the complexity of the structure and composition of many layered Zintl phases poses a challenge for producing phase-pure bulk samples to characterize. Eu11Zn4Sn2As12 is a layered Zintl phase of significant complexity that is of interest for its magnetic, electronic, and thermoelectric properties. To prepare phase-pure Eu11-xNaxZn4Sn2As12, a binary EuAs phase was employed as a precursor, along with NaH. Experimental measurements reveal low thermal conductivity and a high Seebeck coefficient, while theoretical electronic structure calculations reveal a transition from a 3D to 2D electronic structure with increasing carrier concentration. Simulated thermoelectric properties also indicate anisotropic transport, and thermoelectric property measurements confirm the nonparabolicity of the relevant bands near the Fermi energy. Thermoelectric efficiency is known to improve as the dimensionality of the electronic structure is decreased, making this a promising material for further optimization and opening the door to further exploitation of layered Zintl phases with low-dimensional electronic structures for thermoelectric applications.

7.
Mater Horiz ; 10(10): 4256-4269, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37583364

ABSTRACT

Thermoelectric (TE) cooling is an environment-friendly alternative to vapor compression cooling. New TE materials with high coefficients of performance are needed to further advance this technology. Narrow-gap semiconductors and semimetals have garnered interest for Peltier cooling, yet large-scale computational searches often rely on material descriptors that do not account for bipolar conduction effects. In this work, we derive three material descriptors to assess the TE performances of narrow-gap semiconductors and semimetals - band gap, n- and p-type TE quality factors, and the asymmetry in transport between the majority and minority carriers. We show that a large asymmetry is critical to achieving high TE performance through minimization of bipolar conduction effects. We validate the predictive power of the descriptors by correctly identifying Mg3Bi2 and Bi2Te3 as high-performing room-temperature TE materials. By applying these descriptors to a broad set of 650 Zintl phases, we identify three candidate room-temperature TE materials, namely SrSb2, Zn3As2, and NaCdSb. The proposed material descriptors will enable fast, targeted searches of narrow-gap semiconductors and semimetals for low-temperature TEs. We further propose a refined TE quality factor, Bbp, which is a composite descriptor of the peak zT in materials exhibiting significant bipolar conduction; Bbp can be used to compare the TE performances of narrow-gap semiconductors.

8.
Adv Sci (Weinh) ; 10(23): e2302086, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37271926

ABSTRACT

Half-Heusler compounds with semiconducting behavior have been developed as high-performance thermoelectric materials for power generation. Many half-Heusler compounds also exhibit metallic behavior without a bandgap and thus inferior thermoelectric performance. Here, taking metallic half-Heusler MgNiSb as an example, a bandgap opening strategy is proposed by introducing the d-d orbital interactions, which enables the opening of the bandgap and the improvement of the thermoelectric performance. The width of the bandgap can be engineered by tuning the strength of the d-d orbital interactions. The conduction type and the carrier density can also be modulated in the Mg1- x Tix NiSb system. Both improved n-type and p-type thermoelectric properties are realized, which are much higher than that of the metallic MgNiSb. The proposed bandgap opening strategy can be employed to design and develop new half-Heusler semiconductors for functional and energy applications.

9.
Adv Mater ; 35(38): e2302777, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37310868

ABSTRACT

Grain-boundary engineering is an effective strategy to tune the thermal conductivity of materials, leading to improved performance in thermoelectric, thermal-barrier coatings, and thermal management applications. Despite the central importance to thermal transport, a clear understanding of how grain boundaries modulate the microscale heat flow is missing, owing to the scarcity of local investigations. Here, thermal imaging of individual grain boundaries is demonstrated in thermoelectric SnTe via spatially resolved frequency-domain thermoreflectance. Measurements with microscale resolution reveal local suppressions in thermal conductivity at grain boundaries. Also, the grain-boundary thermal resistance - extracted by employing a Gibbs excess approach - is found to be correlated with the grain-boundary misorientation angle. Extracting thermal properties, including thermal boundary resistances, from microscale imaging can provide comprehensive understanding of how microstructure affects heat transport, crucially impacting the materials design of high-performance thermal-management and energy-conversion devices.

10.
Adv Mater ; 35(35): e2302969, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37192421

ABSTRACT

Simultaneously improving the mechanical and thermoelectric (TE) properties is significant for the engineering applications of inorganic TE materials. In this work, a novel nanodomain strategy is developed for Ag2 Te compounds to yield 40% and 200% improved compressive strength (160 MPa) and fracture strain (16%) when compared to domain-free samples (115 MPa and 5.5%, respectively). The domained samples also achieve a 45% improvement in average ZT value. The domain boundaries (DBs) provide extra sites for dislocation nucleation while pinning the dislocation movement, resulting in superior strength and ductility. In addition, phonon scattering induced by DBs suppresses the lattice thermal conductivity of Ag2 Te and also reduces the weighted mobility. These findings provide new insights into grain and DB engineering for high-performance inorganic semiconductors with robust mechanical properties.

11.
J Am Chem Soc ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37026697

ABSTRACT

Entropy-engineered materials are garnering considerable attention owing to their excellent mechanical and transport properties, such as their high thermoelectric performance. However, understanding the effect of entropy on thermoelectrics remains a challenge. In this study, we used the PbGeSnCdxTe3+x family as a model system to systematically investigate the impact of entropy engineering on its crystal structure, microstructure evolution, and transport behavior. We observed that PbGeSnTe3 crystallizes in a rhombohedral structure at room temperature with complex domain structures and transforms into a high-temperature cubic structure at ∼373 K. By alloying CdTe with PbGeSnTe3, the increased configurational entropy lowers the phase-transition temperature and stabilizes PbGeSnCdxTe3+x in the cubic structure at room temperature, and the domain structures vanish accordingly. The high-entropy effect results in increased atomic disorder and consequently a low lattice thermal conductivity of 0.76 W m-1 K-1 in the material owing to enhanced phonon scattering. Notably, the increased crystal symmetry is conducive to band convergence, which results in a high-power factor of 22.4 µW cm-1 K-1. As a collective consequence of these factors, a maximum ZT of 1.63 at 875 K and an average ZT of 1.02 in the temperature range of 300-875 K were obtained for PbGeSnCd0.08Te3.08. This study highlights that the high-entropy effect can induce a complex microstructure and band structure evolution in materials, which offers a new route for the search for high-performance thermoelectrics in entropy-engineered materials.

12.
Mater Horiz ; 10(5): 1875-1883, 2023 May 09.
Article in English | MEDLINE | ID: mdl-36897322

ABSTRACT

The solubility of defects is essential to control the mechanical, electrical and thermal properties of engineering materials. The concentration of defects can be visualized on a phase diagram as providing the width to single-phase regions of compounds. Although the shape of these regions can have a tremendous impact on the maximum defect solubility achievable and guides the engineering of materials, little attention has been paid to the shape of the phase boundaries surrounding these single-phase regions. Here we examine the shape of single-phase boundaries that can be expected for dominating neutral substitutional defects. Single-phase regions in an isothermal phase diagram should be expected to be concave or star-shaped, or at least straight polygonal sides rather than be convex-like droplets. A thermodynamic justification is used to show the concave (hyperbolic cosine) shape depends on the thermodynamic stability of the compound when various substitutional defects dominate. More stable compounds have star-like phase regions, while barely stable compounds should be more polygonal shaped. The Thermo-Calc logo for example would be more physical if it contained a star-like central compound and pointed elemental regions.

13.
ACS Appl Mater Interfaces ; 14(38): 43517-43526, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36123322

ABSTRACT

Rare-earth chalcogenides Re3-xCh4 (Re = La, Pr, Nd, Ch = S, Se, and Te) have been extensively studied as high-temperature thermoelectric (TE) materials owing to their low lattice thermal conductivity (κL) and tunable electron carrier concentration via cation vacancies. In this work, we introduce Y2Te3, a rare-earth chalcogenide with a rocksalt-like vacancy-ordered structure, as a promising n-type TE material. We computationally evaluate the transport properties, optimized TE performance, and doping characteristics of Y2Te3. Combined with a low κL, multiple low-lying conduction band valleys yield a high n-type TE quality factor. We find that a maximum figure of merit zT > 1 can be achieved when Y2Te3 is optimally doped to an electron concentration of 1-2 × 1020 cm-3. We use defect calculations to show that Y2Te3 is n-type dopable under Y-rich growth conditions, which suppress the formation of acceptor-like cation vacancies. Furthermore, we propose that optimal n-type doping can be achieved with halogens (Cl, Br, and I), with I being the most effective dopant. Our computational results as well as experimental results reported elsewhere motivate further optimization of Y2Te3 as an n-type TE material.

14.
ACS Appl Mater Interfaces ; 14(33): 37958-37966, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35968578

ABSTRACT

n-type Mg3Sb2-Mg3Bi2 alloys have been investigated as one of the most promising thermoelectric materials. To achieve high performance, a detailed understanding of the microstructure is required. Although Mg3Sb2-Mg3Bi2 is usually considered to be a complete solid solution, nanosized compositional fluctuations were observed within a matrix and in the vicinity of the grain boundary. As an inhomogeneous microstructure can be beneficial or detrimental to thermoelectric performance, it is important to investigate the evolution of compositional variations for the engineering and long-term use of these materials. Using scanning transmission electron microscopy and atom probe tomography, a Bi-rich phase and compositional fluctuations are observed in sintered and annealed samples. After annealing, the broad intergranular phase was sharpened, resulting in a greater compositional change in the intergranular region. Annealing considerably reduces the fluctuations of Bi and Mg content within the grain as observed in atom probe tomography. Weighted mobility and lattice thermal conductivity were both increased as a result of the homogenized matrix phase. The combined microstructure features of intragrain and grain boundary effects resulted in an increased thermoelectric figure-of-merit zT of Mg3Sb0.6Bi1.4. These findings imply that the optimization of thermal and electrical properties can be realized through microstructure tuning.

15.
Adv Mater ; 34(38): e2204132, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35944565

ABSTRACT

Cation disordering is commonly found in multinary cubic compounds, but its effect on electronic properties has been neglected because of difficulties in determining the ordered structure and defect energetics. An absence of rational understanding of the point defects present has led to poor reproducibility and uncontrolled conduction type. AgBiSe2 is a representative compound that suffers from poor reproducibility of thermoelectric properties, while the origins of its intrinsic n-type conductivity remain speculative. Here, it is demonstrated that cation disordering is facilitated by BiAg charged antisite defects in cubic AgBiSe2 which also act as a principal donor defect that greatly controls the electronic properties. Using density functional theory calculations and in situ Raman spectroscopy, how saturation annealing with selenium vapor can stabilize p-type conductivity in cubic AgBiSe2 alloyed with SnSe at high temperatures is elucidated. With stable and controlled hole concentration, a peak is observed in the weighted mobility and the density-of-states effective mass in AgBiSnSe3 , implying an increased valley degeneracy in this system. These findings corroborate the importance of considering the defect energetics for exploring the dopability of ternary thermoelectric chalcogenides and engineering electronic bands by controlling self-doping.

16.
Eur Neuropsychopharmacol ; 62: 22-35, 2022 09.
Article in English | MEDLINE | ID: mdl-35878581

ABSTRACT

Lumateperone is a novel drug approved for the treatment of schizophrenia in adults and depressive episodes associated with bipolar depression in adults, as monotherapy and as adjunctive therapy with lithium or valproate treatment in the United States. Lumateperone simultaneously modulates key neurotransmitters, such as serotonin, dopamine, and glutamate, implicated in serious mental illness. In patients with schizophrenia, lumateperone was shown to improve positive symptoms along with negative and depressive symptoms, while also enhancing prosocial behavior. Moreover, in patients with bipolar I or II disorder, lumateperone improved depressive symptoms as well. To further understand the mechanisms related to lumateperone's clinical response, the aim of this study was to investigate the effect of lumateperone on dopaminergic- and glutamatergic signaling in the rat medial prefrontal cortex (mPFC). We used the conditioned avoidance response (CAR) test to determine the antipsychotic-like effect of lumateperone, electrophysiology in vitro to study lumateperone's effects on NMDA- and AMPA-induced currents in the mPFC, and the neurochemical techniques microdialysis and amperometry to measure dopamine- and glutamate release in the rat mPFC. Our results demonstrate that lumateperone; i) significantly suppressed CAR in rats, indicating an antipsychotic-like effect, ii) facilitated NMDA and AMPA receptor-mediated currents in the mPFC, in a dopamine D1-dependent manner, and iii) significantly increased dopamine and glutamate release in the rat mPFC. To the extent that these findings can be translated to humans, the ability of lumateperone to activate these pathways may contribute to its demonstrated effectiveness in safely improving symptoms related to neuropsychiatric disorder including mood alterations.


Subject(s)
Antipsychotic Agents , Animals , Dopamine , Glutamic Acid , Heterocyclic Compounds, 4 or More Rings , Humans , N-Methylaspartate , Prefrontal Cortex , Rats , Receptors, Dopamine D1
17.
J Am Chem Soc ; 144(20): 9113-9125, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35537206

ABSTRACT

The understanding of thermoelectric properties of ternary I-III-VI2 type (I = Cu, Ag; III = Ga, In; and VI = Te) chalcopyrites is less well developed. Although their thermal transport properties are relatively well studied, the relationship between the electronic band structure and charge transport properties of chalcopyrites has been rarely discussed. In this study, we reveal the unusual electronic band structure and the dynamic doping effect that could underpin the promising thermoelectric properties of Cu1-xAgxGaTe2 compounds. Density functional theory (DFT) calculations and electronic transport measurements suggest that the Cu1-xAgxGaTe2 compounds possess an unusual non-parabolic band structure, which is important for obtaining a high Seebeck coefficient. Moreover, a mid-gap impurity level was also observed in Cu1-xAgxGaTe2, which leads to a strong temperature-dependent carrier concentration and is able to regulate the carrier density at the optimized value for a wide temperature region and thus is beneficial to obtaining the high power factor and high average ZT of Cu1-xAgxGaTe2 compounds. We also demonstrate a great improvement in the thermoelectric performance of Cu1-xAgxGaTe2 by introducing Cu vacancies and ZnTe alloying. The Cu vacancies are effective in increasing the hole density and the electrical conductivity, while ZnTe alloying reduces the thermal conductivity. As a result, a maximum ZT of 1.43 at 850 K and a record-high average ZT of 0.81 for the Cu0.68Ag0.3GaTe2-0.5%ZnTe compound are achieved.

18.
Adv Mater ; 34(24): e2202255, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35412675

ABSTRACT

Typically, conventional structure transitions occur from a low symmetry state to a higher symmetry state upon warming. In this work, an unexpected local symmetry breaking in the tetragonal diamondoid compound AgGaTe2 is reported, which, upon warming, evolves continuously from an undistorted ground state to a locally distorted state while retaining average crystallographic symmetry. This is a rare phenomenon previously referred to as emphanisis. This distorted state, caused by the weak sd3 orbital hybridization of tetrahedral Ag atoms, causes their displacement off the tetrahedron center and promotes a global distortion of the crystal structure resulting in strong acoustic-optical phonon scattering and an ultralow lattice thermal conductivity of 0.26 W m-1 K-1 at 850 K in AgGaTe2 . The findings explain the underlying reason for the unexpectedly low thermal conductivities of silver-based compounds compared to copper-based analogs and provide a guideline to suppressing heat transport in diamondoid and other materials.

19.
Mater Horiz ; 9(2): 842, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35107118

ABSTRACT

Correction for 'The importance of phase equilibrium for doping efficiency: iodine doped PbTe' by James Male et al., Mater. Horiz., 2019, 6, 1444-1453, DOI: 10.1039/C9MH00294D.

20.
Chem Soc Rev ; 51(2): 485-512, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34761784

ABSTRACT

The ability of thermoelectric (TE) materials to convert thermal energy to electricity and vice versa highlights them as a promising candidate for sustainable energy applications. Despite considerable increases in the figure of merit zT of thermoelectric materials in the past two decades, there is still a prominent need to develop scalable synthesis and flexible manufacturing processes to convert high-efficiency materials into high-performance devices. Scalable printing techniques provide a versatile solution to not only fabricate both inorganic and organic TE materials with fine control over the compositions and microstructures, but also manufacture thermoelectric devices with optimized geometric and structural designs that lead to improved efficiency and system-level performances. In this review, we aim to provide a comprehensive framework of printing thermoelectric materials and devices by including recent breakthroughs and relevant discussions on TE materials chemistry, ink formulation, flexible or conformable device design, and processing strategies, with an emphasis on additive manufacturing techniques. In addition, we review recent innovations in the flexible, conformal, and stretchable device architectures and highlight state-of-the-art applications of these TE devices in energy harvesting and thermal management. Perspectives of emerging research opportunities and future directions are also discussed. While this review centers on thermoelectrics, the fundamental ink chemistry and printing processes possess the potential for applications to a broad range of energy, thermal and electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...