Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 102(12): 11504-11522, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31587901

ABSTRACT

Water is essential in livestock production systems. In typical dairy production systems, 90% of the total water used by a dairy farm is attributed to feed production. Theoretically, ration manipulation is a method to potentially reduce the irrigation water needed for feed crops without dramatically increasing diet costs. However, published quantitative studies on the relationship between feed production and water use that are integrated with linear programming models are scarce. The overall objective of this study was to develop an optimization framework that could achieve a balance between minimization of dietary costs and dietary irrigation water usage, and that could be used as a framework for future research and models for various livestock production systems. Weighted goal programming models were developed to minimize the dietary costs and irrigation water usage for a hypothetical cow under 8 different environmental scenarios. The environmental conditions used a 2 × 2 × 2 factorial design, including 2 atmospheric CO2 concentrations (400 and 550 ppm), 2 water years (dry and wet), and 2 irrigation methods (furrow and drip). A systematic weighting scheme was used to model the trade-off between minimizing diet cost and minimizing irrigation water use for feedstuffs. Each environmental condition generated a set of distinct diets, which each met the same nutrient requirements of the hypothetical cow but had a different water usage when the weighting scheme was changed from weighting minimum diet costs to minimum irrigation water usage. For water resource planning in areas of dairy production, this set of unique solutions provides the decision maker with different feeding options according to diet cost, water usage, and available feeds. As water was more constrained, dietary dry matter intake increased, concentrations of neutral detergent fiber, ether extract, and energy decreased, and the concentration of lignin increased because less nutritive but more water-saving feedstuffs were included in the diet. Mitigation costs of water usage were calculated from goal programming results and indicated that the potential value of water under water-limited conditions (e.g., in a drought region) was higher than that under water-sufficient conditions. However, a smaller increase in feed costs can initially significantly reduce water usage compared with that of a least-cost diet, which implies that the reduction of water usage through ration manipulation might be possible. This model serves as a framework for the study of irrigation water usage in dairy production and other livestock production systems and for decision-making processes involved in water resources planning in the broader area of animal production.


Subject(s)
Animal Feed/economics , Cattle , Diet/veterinary , Drinking Water , Animals , Costs and Cost Analysis , Dairying/economics , Diet/economics , Environment , Female , Lactation , Nutritional Requirements , Programming, Linear
2.
Nano Lett ; 9(11): 3877-82, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19757858

ABSTRACT

We demonstrate the growth of phosphorus doped Zn(1-x)Mg(x)O nanowire (NW) using pulsed laser deposition. For the first time, p-type Zn(0.92)Mg(0.08)O:P NWs are likely obtained in reference to atomic force microscopy based piezoelectric output measurements, X-ray photoelectron spectroscopy, and the transport property between the NWs and a n-type ZnO film. A shallow acceptor level of approximately 140 meV is identified by temperature-dependent photoluminescence. A piezoelectric output of 60 mV on average has been received using the doped NWs. Besides a control on NW aspect ratio and density, band gap engineering has also been achieved by alloying with Mg to a content of x = 0.23. The alloyed NWs with controllable conductivity type have potential application in high-efficiency all-ZnO NWs based LED, high-output ZnO nanogenerator, and other optical or electrical devices.

3.
J Neurophysiol ; 86(5): 2330-43, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11698523

ABSTRACT

More than 30,000 hearing-impaired human subjects have learned to use cochlear implants for speech perception and speech discrimination. To understand the basic mechanisms underlying the successful application of contemporary speech processing strategies, it is important to investigate how complex electrical stimuli delivered to the cochlea are processed and represented in the central auditory system. A deaf animal model has been developed that allows direct comparison of psychophysical thresholds with central auditory neuronal thresholds to temporally modulated intracochlear electrical signals in the same animals. Behavioral detection thresholds were estimated in neonatally deafened cats for unmodulated pulse trains (e.g., 30 pulses/s or pps) and sinusoidal amplitude-modulated (SAM) pulse trains (e.g., 300 pps, SAM at 30 Hz; 300/30 AM). Animals were trained subsequently in a discrimination task to respond to changes in the modulation frequency of successive SAM signals (e.g., 300/8 AM vs. 300/30 AM). During acute physiological experiments, neural thresholds to pulse trains were estimated in the inferior colliculus (IC) and the primary auditory cortex (A1) of the anesthetized animals. Psychophysical detection thresholds for unmodulated and SAM pulse trains were virtually identical. Single IC neuron thresholds for SAM pulse trains showed a small but significant increase in threshold (0.4 dB or 15.5 microA) when compared with thresholds for unmodulated pulse trains. The mean difference between psychophysical and minimum neural thresholds within animals was not significant (mean = 0.3 dB). Importantly, cats also successfully discriminated changes in the modulation frequencies of the SAM signals. Performance on the discrimination task was not affected by carrier rate (100, 300, 500, 1,000, or 1,500 pps). These findings indicate that 1) behavioral and neural response thresholds are based on detection of the peak pulse amplitudes of the modulated and unmodulated signals, and 2) discrimination of successive SAM pulse trains is based on temporal resolution of the envelope frequencies. Overall, our animal model provides a robust framework for future studies of behavioral discrimination and central neural temporal processing of electrical signals applied to the deaf cochlea by a cochlear implant.


Subject(s)
Auditory Perception , Cochlea/physiopathology , Deafness/physiopathology , Deafness/psychology , Discrimination, Psychological , Animals , Cats , Cochlear Implants , Differential Threshold , Electric Stimulation/methods , Electrophysiology , Inferior Colliculi/pathology , Inferior Colliculi/physiopathology , Neurons, Afferent/physiology , Psychophysics , Sensory Thresholds
4.
Genomics ; 75(1-3): 35-42, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11472065

ABSTRACT

We conducted a quantitative trait locus (QTL) mapping study to dissect the multifactorial nature of maximal electroshock seizure threshold (MEST) in C57BL/6 (B6) and DBA/2 (D2) mice. MEST determination involved a standard paradigm in which 8- to 12-week-old mice received one shock per day with a daily incremental increase in electrical current until a maximal seizure (tonic hindlimb extension) was induced. Mean MEST values in parental strains were separated by over five standard deviation units, with D2 mice showing lower values than B6 mice. The distribution of MEST values in B6xD2 F2 intercrossed mice spanned the entire phenotypic range defined by parental strains. Statistical mapping yielded significant evidence for QTLs on chromosomes 1, 2, 5, and 15, which together explained over 60% of the phenotypic variance in the model. The chromosome 1 QTL represents a locus of major effect, accounting for about one-third of the genetic variance. Experiments involving a congenic strain (B6.D2-Mtv7(a)/Ty) enabled more precise mapping of the chromosome 1 QTL and indicate that it lies in the genetic interval between markers D1Mit145 and D1Mit17. These results support the hypothesis that the distal portion of chromosome 1 harbors a gene(s) that has a fundamental role in regulating seizure susceptibility.


Subject(s)
Electroshock , Pain Threshold , Animals , Chromosome Mapping , Crosses, Genetic , Epilepsy/genetics , Genetic Markers , Genetic Predisposition to Disease , Genotype , Mice , Mice, Congenic , Mice, Inbred C57BL , Microsatellite Repeats , Models, Statistical , Phenotype , Polymorphism, Genetic , Quantitative Trait, Heritable , Sex Factors
5.
J Acoust Soc Am ; 109(5 Pt 1): 2035-48, 2001 May.
Article in English | MEDLINE | ID: mdl-11386556

ABSTRACT

This report examines the effects of intracochlear electrode configuration and mode of stimulation (bipolar or monopolar) on neural threshold and spatial selectivity in the inferior colliculus (IC) of the cat. Single and multiunit IC recordings were made in three groups of animals; acutely deafened adults (controls), neonatally deafened animals studied at 6 to 18 months of age and neonatally deafened cats studied at 2.5 to 6.5 years. Response thresholds were plotted versus IC depth to measure the spatial distribution of responses. The response selectivity for each stimulating configuration was defined as the width of the resulting spatial tuning curve (STC) measured at 6 dB above threshold. Spiral ganglion cell (SG) survival was examined histologically in all neonatally deafened animals and correlated with physiological results. Animals studied at less than 1.5 years had SG densities of 23.5%-64.4% of normal (mean=42.7%) while animals studied at greater than 2.5 years had densities of 5.1%-18.3% of normal (mean=9.9%). Electrophysiological results include the following. (1) Monopolar thresholds were 7-8 dB lower than bipolar thresholds in the same animals. (2) Varying the configuration of bipolar contacts (measured as radial, offset radial and longitudinal pairs) did not systematically affect IC threshold in either controls or short-term neonatally deafened animals. In contrast, the long-term neonatally deafened animals showed a difference in threshold with each configuration. (3) The spatial distributions (Q(6 dB)) of responses to bipolar stimulation were approximately 40% more restricted than those for monopolar stimulation. (4) The spatial selectivity of neonatally deafened animals studied at ages up to 1.5 years was equal to that of control animals with normal auditory experience. However, selectivity was degraded in the older animals. (5) Selectivity was decreased in some animals with the longitudinal bipolar configuration and multiple response peaks were seen in several cases using this stimulus configuration.


Subject(s)
Auditory Threshold/physiology , Cochlea/pathology , Cochlea/physiopathology , Deafness/pathology , Deafness/physiopathology , Animals , Cats , Cell Count , Cell Survival , Electric Stimulation , Electrodes, Implanted , Evoked Potentials, Auditory, Brain Stem/physiology , Inferior Colliculi/pathology , Spiral Ganglion/pathology
7.
Neuropsychopharmacology ; 24(3): 291-9, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11166519

ABSTRACT

Mature male and female mice from six inbred stains were tested for susceptibility to behavioral seizures induced by a single injection of cocaine. Cocaine was injected ip over a range of doses (50-100 mg/kg) and behavior was monitored for 20 minutes. Seizure end points included latency to forelimb or hindlimb clonus, latency to clonic running seizure and latency to jumping bouncing seizure. A range of strain specific sensitivities was documented with A/J and SJL mice being most sensitive and C57BL/6J most resistant. DBA/2J, BALB/cByJ and NZW/LacJ strains exhibited intermediate sensitivity. EEG recordings were made in SJL, A/J and C57BL/6J mice revealing a close correspondence between electrical activity and behavior. Additionally, levels of cocaine determined in hippocampus and cortex were not different between sensitive and resistant strains. Additional studies of these murine strains may be useful for investigating genetic influences on cocaine-induced seizures.


Subject(s)
Brain/metabolism , Cocaine/pharmacokinetics , Cocaine/toxicity , Disease Models, Animal , Kainic Acid/pharmacokinetics , Kainic Acid/toxicity , Mice, Inbred Strains , Seizures/chemically induced , Animals , Brain/drug effects , Cerebral Cortex/metabolism , Cocaine/administration & dosage , Dose-Response Relationship, Drug , Electroencephalography , Female , Genetic Predisposition to Disease , Hippocampus/metabolism , Kainic Acid/administration & dosage , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Seizures/genetics
8.
Int J Biometeorol ; 45(4): 161-9, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11769315

ABSTRACT

Although using hourly weather data offers the greatest accuracy for estimating growing degree-day values, daily maximum and minimum temperature data are often used to estimate these values by approximating the diurnal temperature trends. This paper presents a new empirical model for estimating the hourly mean temperature. The model describes the diurnal variation using a sine function from the minimum temperature at sunrise until the maximum temperature is reached, another sine function from the maximum temperature until sunset, and a square-root function from then until sunrise the next morning. The model was developed and calibrated using several years of hourly data obtained from five automated weather stations located in California and representing a wide range of climate conditions. The model was tested against an additional data-set at each location. The temperature model gave good results, the rootmean-square error being less than 2.0 degrees C for most years and locations. The comparison with published models from the literature showed that the model was superior to the other methods. Hourly temperatures from the model were used to calculate degree-day values. A comparison between degree-day estimates determined from the model and those obtained other selected methods is presented. The results showed that the model had the best accuracy in general regardless of the season.


Subject(s)
Climate , Models, Theoretical , Temperature , Forecasting , Seasons , Time Factors
9.
Int J Biometeorol ; 45(4): 178-83, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11769317

ABSTRACT

In an arid environment, the effect of evaporation on energy balance can affect air temperature recordings and greatly impact on degree-day calculations. This is an important consideration when choosing a site or climate data for phenological models. To our knowledge, there is no literature showing the effect of the underlying surface and its fetch around a weather station on degree-day accumulations. In this paper, we present data to show that this is a serious consideration, and it can lead to dubious models. Microscale measurements of temperature and energy balance are presented to explain why the differences occur. For example, the effect of fetch of irrigated grass and wetting of bare soil around a weather station on diurnal temperature are reported. A 43-day experiment showed that temperature measured on the upwind edge of an irrigated grass area averaged 4% higher than temperatures recorded 200 m inside the grass field. When the single-triangle method was used with a 10 degrees C threshold and starting on May 19, the station on the upwind edge recorded 900 degree-days on June 28, whereas the interior station recorded 900 degree-days on July 1. Clearly, a difference in fetch can lead to big errors for large degree-day accumulations. Immediately after wetting, the temperature over a wet soil surface was similar to that measured over grass. However, the temperature over the soil increased more than that over the grass as the soil surface dried. Therefore, the observed difference between temperatures measured over bare soil and those over grass increases with longer periods between wettings. In most arid locations, measuring temperature over irrigated grass gives a lower mean annual temperature, resulting in lower annual cumulative degree-day values. This was verified by comparing measurements over grass with those over bare soil at several weather stations in a range of climates. To eliminate the effect of rainfall frequency, using temperature data collected only over irrigated grass, is recommended for long-term assessment of climate change effects on degree-day accumulation. In high evaporative conditions, a fetch of at least 100 m of grass is recommended. Our results clearly indicate that weather stations sited over bare soil have consistently higher degree-day accumulations. Therefore, especially in arid environments, phenology models based on temperature collected over bare soil are not transferable to those based on temperature recorded over irrigated grass. At a minimum, all degree-day-based phenology models reported in the literature should clearly describe the weather station site.


Subject(s)
Models, Theoretical , Rain , Temperature , Environmental Monitoring , Poaceae , Seasons , Soil , Water/chemistry
10.
Arthroscopy ; 16(8): E19, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11078552

ABSTRACT

Presented is a technique for the repair of tears that occur anterior to the popliteal hiatus. These tears should be acute, small, and stable. There is minimal disruption of the anatomy with this technique.


Subject(s)
Arthroscopy/methods , Menisci, Tibial/surgery , Humans , Knee Injuries/surgery , Menisci, Tibial/anatomy & histology , Muscle, Skeletal/anatomy & histology , Tendons/anatomy & histology , Tibia/anatomy & histology , Tibial Meniscus Injuries
11.
Hear Res ; 147(1-2): 200-20, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10962186

ABSTRACT

Many studies have reported plastic changes in central auditory frequency organization after chronic cochlear lesions. These studies employed mechanical, acoustic or drug-induced disruptions of restricted regions of the organ of Corti that permanently alter its tuning and sensitivity and require an extended recovery period before central effects can be measured. In this study, mechanical lesions were made to 1 mm sectors of the spiral ganglion (SG). These lesions remove a restricted portion of the cochlear output, but leave the organ of Corti and basilar membrane intact. Multiunit mapping assessed the pre- and post-lesion tonotopic organization of the inferior colliculus (IC). Immediately after SG lesions, IC neurons previously tuned to the lesion frequencies became less sensitive to those frequencies but more sensitive to lesion edge frequencies, resulting in a shift in their characteristic frequencies (CFs). Notches in the excitatory response areas at frequencies corresponding to the lesion frequencies and expansion of spatial tuning curves were also observed. CFs of neurons tuned to unlesioned frequencies were unchanged. These results suggest that 'plastic' changes similar to those observed after long survival times in previous studies require little or no experience and occur within minutes to hours following the lesion.


Subject(s)
Inferior Colliculi/physiopathology , Spiral Ganglion/injuries , Spiral Ganglion/physiopathology , Action Potentials , Animals , Auditory Perception/physiology , Cats , Deafness/pathology , Deafness/physiopathology , Inferior Colliculi/pathology , Neuronal Plasticity , Neurons/pathology , Neurons/physiology , Spiral Ganglion/pathology
12.
Hear Res ; 147(1-2): 221-41, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10962187

ABSTRACT

The goal of this research is to examine the functional consequences of patterned electrical stimulation delivered by a cochlear implant in the deafened developing auditory system. In previous electrophysiological experiments conducted in the inferior colliculus (IC), we have demonstrated that the precise cochleotopic organization of the central nucleus (ICC) develops normally in neonatally deafened unstimulated cats and is unaltered despite the lack of normal auditory input during development. However, these studies also showed that chronic electrical stimulation delivered at a single intracochlear location by one bipolar channel of a cochlear implant induces significant expansion of the central representation of the stimulated cochlear sector and degrades the cochleotopic organization of the IC. This report presents additional data from a new experimental series of neonatally deafened cats that received chronic stimulation on two adjacent bipolar intracochlear channels of a cochlear implant. Results suggest that competing inputs elicited by electrical stimulation delivered by two adjacent channels can maintain the selective representations of each activated cochlear sector within the central auditory system and prevent the expansion seen after single-channel stimulation. Alternating stimulation of two channels and use of highly controlled electrical signals may be particularly effective in maintaining or even sharpening selectivity of central representations of stimulated cochlear sectors. In contrast, simultaneous stimulation using two channels of a model analog cochlear implant processor in one experimental animal failed to maintain channel selectivity and resulted in marked expansion and fusion of the central representations of the stimulated channels. This potentially important preliminary result suggests that under some conditions the central auditory system may be unable to discriminate simultaneous, overlapping inputs from adjacent cochlear implant channels as distinct.


Subject(s)
Cochlear Implants , Deafness/physiopathology , Deafness/therapy , Inferior Colliculi/physiopathology , Animals , Animals, Newborn , Cats , Disease Models, Animal , Electric Stimulation/methods , Electrodes , Evoked Potentials, Auditory, Brain Stem , Humans , Inferior Colliculi/growth & development , Neuronal Plasticity
13.
J Neurophysiol ; 84(1): 166-83, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10899194

ABSTRACT

Current cochlear prostheses use amplitude-modulated pulse trains to encode acoustic signals. In this study we examined the responses of inferior colliculus (IC) neurons to sinusoidal amplitude-modulated pulses and compared the maximum unmodulated pulse rate (Fmax) to which they responded with the maximum modulation frequency (maxFm) that they followed. Consistent with previous results, responses to unmodulated pulses were all low-pass functions of pulse rate. Mean Fmax to unmodulated pulses was 104 pulses per second (pps) and modal Fmax was 60 pps. Above Fmax IC neurons ceased responding except for an onset burst at the beginning of the stimulus. However, IC neurons responded to much higher pulse rates when these pulses were amplitude modulated; 74% were relatively insensitive to carrier rate and responded to all modulated carriers including those exceeding 600 pps. In contrast, the responses of these neurons (70%) were low-pass functions of modulation frequency, and the remaining (30%) had band-pass functions with a maxFm of 42 and 34 Hz, respectively. Thus temporal resolution of IC neurons for modulated frequencies is significantly lower than that for unmodulated pulses. These two measures of temporal resolution (Fmax and maxFm) were uncorrelated (r(2) = 0.101). Several parameters influenced the amplitude and temporal structure of modulation responses including modulation depth, overall intensity and modulation-to-carrier rate ratio. We observed distortions in unit responses to amplitude-modulated signals when this ratio was 1/4 to 1/6. Since most current cochlear implant speech processors permit ratios that are significantly greater than this, severe distortion and signal degradation may occur frequently in these devices.


Subject(s)
Cochlear Implants , Deafness/physiopathology , Deafness/therapy , Inferior Colliculi/cytology , Neurons/physiology , Animals , Cats , Cochlea/physiology , Electric Stimulation , Electrophysiology , Inferior Colliculi/physiology
14.
J Orthop Trauma ; 14(3): 216-9, 2000.
Article in English | MEDLINE | ID: mdl-10791676

ABSTRACT

The second reported case in the current literature of peroneal nerve palsy in bilateral femur fractures is described. This is the first case report of bilateral nerve palsies occurring in bilateral femoral fractures and the first report of bilateral peroneal nerve palsy associated with bilateral skeletal traction.


Subject(s)
Femoral Fractures/therapy , Multiple Trauma/therapy , Peroneal Nerve/injuries , Peroneal Neuropathies/etiology , Traction/adverse effects , Accidents, Traffic , Adolescent , Female , Femoral Fractures/diagnostic imaging , Fracture Fixation, Internal/methods , Humans , Multiple Trauma/diagnostic imaging , Peroneal Neuropathies/rehabilitation , Prognosis , Radiography
15.
J Neurophysiol ; 83(4): 2145-62, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10758124

ABSTRACT

Cochlear prostheses for electrical stimulation of the auditory nerve ("electrical hearing") can provide auditory capacity for profoundly deaf adults and children, including in many cases a restored ability to perceive speech without visual cues. A fundamental challenge in auditory neuroscience is to understand the neural and perceptual mechanisms that make rehabilitation of hearing possible in these deaf humans. We have developed a feline behavioral model that allows us to study behavioral and physiological variables in the same deaf animals. Cats deafened by injection of ototoxic antibiotics were implanted with either a monopolar round window electrode or a multichannel scala tympani electrode array. To evaluate the effects of perceptually significant electrical stimulation of the auditory nerve on the central auditory system, an animal was trained to avoid a mild electrocutaneous shock when biphasic current pulses (0.2 ms/phase) were delivered to its implanted cochlea. Psychophysical detection thresholds and electrical auditory brain stem response (EABR) thresholds were estimated in each cat. At the conclusion of behavioral testing, acute physiological experiments were conducted, and threshold responses were recorded for single neurons and multineuronal clusters in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (A1). Behavioral and neurophysiological thresholds were evaluated with reference to cochlear histopathology in the same deaf cats. The results of the present study include: 1) in the cats implanted with a scala tympani electrode array, the lowest ICC and A1 neural thresholds were virtually identical to the behavioral thresholds for intracochlear bipolar stimulation; 2) behavioral thresholds were lower than ICC and A1 neural thresholds in each of the cats implanted with a monopolar round window electrode; 3) EABR thresholds were higher than behavioral thresholds in all of the cats (mean difference = 6.5 dB); and 4) the cumulative number of action potentials for a sample of ICC neurons increased monotonically as a function of the amplitude and the number of stimulating biphasic pulses. This physiological result suggests that the output from the ICC may be integrated spatially across neurons and temporally integrated across pulses when the auditory nerve array is stimulated with a train of biphasic current pulses. Because behavioral thresholds were lower and reaction times were faster at a pulse rate of 30 pps compared with a pulse rate of 2 pps, spatial-temporal integration in the central auditory system was presumably reflected in psychophysical performance.


Subject(s)
Auditory Threshold/physiology , Cochlear Implants , Cochlear Nerve/physiology , Deafness/physiopathology , Psychophysics , Age Factors , Animals , Behavior, Animal/physiology , Cats , Cochlear Nerve/cytology , Conditioning, Psychological/physiology , Disease Models, Animal , Electric Stimulation , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing/physiology , Inferior Colliculi/cytology , Inferior Colliculi/physiology , Microelectrodes , Neurons, Afferent/physiology , Reaction Time/physiology , Round Window, Ear/physiology , Scala Tympani , Spiral Ganglion/cytology , Spiral Ganglion/physiology
16.
Audiol Neurootol ; 5(1): 31-8, 2000.
Article in English | MEDLINE | ID: mdl-10686430

ABSTRACT

Psychophysical detection thresholds for unmodulated electrical pulse trains or for sinusoidally amplitude-modulated (SAM) pulse trains were estimated in deaf juvenile cats using a conditioned avoidance paradigm. Biphasic current pulses (0.2 ms/phase) were delivered by scala tympani electrodes consisting of 4-8 electrode contacts driven as bipolar pairs. Electrical auditory brainstem response (EABR) thresholds were obtained periodically, and at the conclusion of behavioral training, response thresholds were obtained for neurons in the inferior colliculus (IC) and the primary auditory cortex (A1) in acute physiological experiments in the same animals. The results of the study include: (1) detection thresholds for unmodulated pulse trains and for SAM pulse trains were virtually identical; (2) EABR thresholds and behavioral thresholds were significantly correlated, although EABR thresholds consistently overestimated behavioral thresholds; (3) the lowest thresholds in the IC and the A1 were significantly correlated with behavioral thresholds, and (4) mean lowest thresholds in the IC and the A1 were essentially the same as the mean psychophysical detection threshold in the trained deaf cats.


Subject(s)
Cochlea/physiology , Deafness/surgery , Electric Stimulation , Evoked Potentials, Auditory, Brain Stem/physiology , Animals , Auditory Threshold/physiology , Cats , Cochlear Implants , Electric Stimulation/instrumentation , Equipment Design
17.
J Neurophysiol ; 82(6): 2883-902, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10601427

ABSTRACT

As cochlear implants have become increasingly successful in the rehabilitation of adults with profound hearing impairment, the number of pediatric implant subjects has increased. We have developed an animal model of congenital deafness and investigated the effect of electrical stimulus frequency on the temporal resolution of central neurons in the developing auditory system of deaf cats. Maximum following frequencies (Fmax) and response latencies of isolated single neurons to intracochlear electrical pulse trains (charge balanced, constant current biphasic pulses) were recorded in the contralateral inferior colliculus (IC) of two groups of neonatally deafened, barbiturate-anesthetized cats: animals chronically stimulated with low-frequency signals (< or = 80 Hz) and animals receiving chronic high-frequency stimulation (> or = 300 pps). The results were compared with data from unstimulated, acutely deafened and implanted adult cats with previously normal hearing (controls). Characteristic differences were seen between the temporal response properties of neurons in the external nucleus (ICX; approximately 16% of the recordings) and neurons in the central nucleus (ICC; approximately 81% of all recordings) of the IC: 1) in all three experimental groups, neurons in the ICX had significantly lower Fmax and longer response latencies than those in the ICC. 2) Chronic electrical stimulation in neonatally deafened cats altered the temporal resolution of neurons exclusively in the ICC but not in the ICX. The magnitude of this effect was dependent on the frequency of the chronic stimulation. Specifically, low-frequency signals (30 pps, 80 pps) maintained the temporal resolution of ICC neurons, whereas higher-frequency stimuli significantly improved temporal resolution of ICC neurons (i.e., higher Fmax and shorter response latencies) compared with neurons in control cats. Furthermore, Fmax and latencies to electrical stimuli were not correlated with the tonotopic gradient of the ICC, and changes in temporal resolution following chronic electrical stimulation occurred uniformly throughout the entire ICC. In all three experimental groups, increasing Fmax was correlated with shorter response latencies. The results indicate that the temporal features of the chronically applied electrical signals critically influence temporal processing of neurons in the cochleotopically organized ICC. We suggest that such plastic changes in temporal processing of central auditory neurons may contribute to the intersubject variability and gradual improvements in speech recognition performance observed in clinical studies of deaf children using cochlear implants.


Subject(s)
Cochlea/physiology , Inferior Colliculi/physiology , Neurons/physiology , Acoustic Stimulation , Animals , Animals, Newborn , Cats , Deafness/physiopathology , Electric Stimulation , Electrodes, Implanted , Inferior Colliculi/cytology , Inferior Colliculi/growth & development , Time Factors
18.
J Comp Neurol ; 412(4): 543-62, 1999 Oct 04.
Article in English | MEDLINE | ID: mdl-10464355

ABSTRACT

This investigation examined the consequences of neonatal deafness and chronic intracochlear electrical stimulation delivered by a cochlear implant during maturation. Kittens were bilaterally deafened by an ototoxic drug administered daily for 2 weeks immediately after birth. Unilateral electrical stimulation was initiated at 7-10 weeks of age and continued over periods of 22-47 weeks (4 hours/day; 5 days/week). Bipolar intracochlear electrodes delivered one of several different electrical signals designed to be temporally challenging to the central auditory system. Morphometric evaluation of spiral ganglion (SG) cell somata within Rosenthal's canal demonstrated a mean of approximately 50% of normal cell density maintained in the chronically stimulated ears, compared with approximately 30% on the control deafened side. This 20% difference in density was highly significant and was greater than differences reported in earlier studies using 30 pps stimulation delivered by either intracochlear bipolar or round window monopolar electrodes. However, the duration of stimulation was also longer in the present study, so it is unclear to what extent the nature of the temporally challenging stimulation vs. its duration contributed to the marked increase in survival. Measurements of the SG cell somata revealed a pronounced decrease in cell diameter in neonatally deafened cats studied about 1 year after deafening, and an additional decrease after long-term deafness (2.5-6.5 years). Furthermore, in the cochlear regions with the greatest stimulation-induced differences in SG cell density, direct measurements of cross-sectional soma area of the largest cells revealed that cells were significantly larger in the stimulated ears. Thus, in addition to the marked increase in the number of surviving SG cells, larger soma area contributed modestly to the pronounced increase in neural density following chronic electrical stimulation.


Subject(s)
Cochlear Implants , Deafness , Neurons/physiology , Spiral Ganglion/cytology , Animals , Animals, Newborn , Cats , Cell Count , Cell Survival/physiology , Cochlea/pathology , Electric Stimulation
19.
IEEE Trans Biomed Eng ; 46(3): 340-52, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10097469

ABSTRACT

An injection-molded internal supporting rib has been produced to control the flexibility of silicone rubber encapsulated electrodes designed to electrically stimulate the auditory nerve in human subjects with severe to profound hearing loss. The rib molding dies, and molds for silicone rubber encapsulation of the electrode, were designed and machined using AutoCad and MasterCam software packages in a PC environment. After molding, the prototype plastic ribs were iteratively modified based on observations of the performance of the rib/silicone composite insert in a clear plastic model of the human scala tympani cavity. The rib-based electrodes were reliably inserted farther into these models, required less insertion force and were positioned closer to the target auditory neural elements than currently available cochlear implant electrodes. With further design improvements the injection-molded rib may also function to accurately support metal stimulating contacts and wire leads during assembly to significantly increase the manufacturing efficiency of these devices. This method to reliably control the mechanical properties of miniature implantable devices with multiple electrical leads may be valuable in other areas of biomedical device design.


Subject(s)
Cochlear Implants , Electrodes, Implanted , Animals , Cadaver , Deafness/rehabilitation , Equipment Safety , Humans , Materials Testing , Models, Anatomic , Prosthesis Design , Silicone Elastomers , Surface Properties , Temporal Bone/surgery
20.
J Comp Neurol ; 384(2): 293-311, 1997 Jul 28.
Article in English | MEDLINE | ID: mdl-9215724

ABSTRACT

A fundamenntal organizational principle of the central auditory system is that virtually all areas are tonotopically organized. However, we know very little about the timing or mechanisms that are responsible for the development of this organization. When cats are born, their auditory nervous systems are extremely immature, and their hearing thresholds are very high. Until postnatal days 7-10 (P7-10), cats have behavioral and physiological thresholds which are near or above the pain threshold for adults and also have poor frequency selectivity. Physiological thresholds for auditory nerve fibers and cochlear nucleus neurons are typically above 100-120 dB SPL (sound pressure level re 20 microPa). Three weeks later (at approximately P31), the sensitivity and frequency discrimination (tuning) of these neurons approximate adult values. This study examines the development of the tonotopic projections from the spiral ganglion to the cochlear nucleus during the period in cat development in which the auditory system undergoes the transition from being essentially nonfunctional to having adult-like function. With the animals heavily anesthetized, the cochleas were surgically exposed in kittens ranging in age from P6 to P45. Focal injections of Neurobiotin (NB) were made into Rosenthal's canal, labeling a small cluster of cells in the spiral ganglion of each cochlea. The projections of these labeled cells were visualized as frequency-specific bands of labeled axons and terminals in all major subdivisions of the cochlear nucleus. The thickness of these bands (i.e., the dimension of the bands orthogonal to the isofrequency representation and across the frequency gradient) were measured and compared to similar projections in adults. As in adult cats, the thickness of the bands varied only slightly with the location of the injection site (frequency representation) over a range of 1-7 mm from the cochlear base (45-13 kHz). Moreover, band thickness did not vary significantly with age. These data indicate that the tonotopic organization of spiral ganglion projections to the cochlear nucleus is as precise in kittens as young as P6 as it is in adults.


Subject(s)
Cochlear Nucleus/cytology , Spiral Ganglion/cytology , Afferent Pathways/cytology , Afferent Pathways/physiology , Aging/physiology , Animals , Biotin/analogs & derivatives , Brain Stem/cytology , Brain Stem/physiology , Cats , Cochlear Nucleus/growth & development , Neurons, Afferent/physiology , Spiral Ganglion/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...