Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 62(16): 3548-52, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24716724

ABSTRACT

Several (+)- and (-)-α-pinene derivatives were synthesized and evaluated for their antimicrobial activity toward Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and the unicellular fungus Candida albicans using bioautographic assays. (+)-α-Pinene 1a showed modest activity against the test organisms, whereas (-)-α-pinene 1b showed no activity at the tested concentration. Of all the α-pinene derivatives evaluated, the ß-lactam derivatives (10a and 10b) were the most antimicrobial. The increase in the antimicrobial activity of 10a compared to 1a ranged from nearly 3.5-fold (C. albicans) to 43-fold (S. aureus). The mean ± standard deviation for the zone of inhibition (mm) for 10a (C. albicans) was 31.9 ± 4.3 and that for S. aureus was 51.1 ± 2.9. Although (-)-α-pinene 1b was not active toward the test microorganisms, the corresponding ß-lactam 10b, amino ester 13b, and amino alcohol 14b showed antimicrobial activity toward the test microorganisms. The increase in the antimicrobial activity of 10b compared to 1b ranged from 32-fold (S. aureus) to 73-fold (M. luteus). The mean ± standard deviation for the zone of inhibition (mm) for 10b (S. aureus) was 32.0 ± 0.60 and that for M. luteus was 73.2 ± 0.30.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Monoterpenes/chemical synthesis , Monoterpenes/pharmacology , Anti-Infective Agents/chemistry , Bacteria/drug effects , Bicyclic Monoterpenes , Candida albicans/drug effects , Microbial Sensitivity Tests , Molecular Structure , Monoterpenes/chemistry , Structure-Activity Relationship
3.
Environ Sci Pollut Res Int ; 17(4): 1009-15, 2010 May.
Article in English | MEDLINE | ID: mdl-20140649

ABSTRACT

INTRODUCTION: The effect of oceanic CO2 sequestration was examined exposing a deep-sea bacterium identified as Vibrio alginolyticus (9NA) to elevated levels of carbon dioxide and monitoring its growth at 2,750 psi (1,846 m depth). FINDINGS: The wild-type strain of 9NA could not grow in acidified marine broth below a pH of 5. The pH of marine broth did not drop below this level until at least 20.8 mM of CO2 was injected into the medium. 9NA did not grow at this CO2 concentration or higher concentrations (31.2 and 41.6 mM) for at least 72 h. Carbon dioxide at 10.4 mM also inhibited growth, but the bacterium was able to recover and grow. Exposure to CO2 caused the cell to undergo a morphological change and form a dimple-like structure. The membrane was also damaged but with no protein leakage.


Subject(s)
Carbon Dioxide/toxicity , Seawater/microbiology , Vibrio/drug effects , Water Pollutants, Chemical/toxicity , Carbon Dioxide/chemistry , Seawater/chemistry , Vibrio/growth & development , Vibrio/isolation & purification , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...