Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34832776

ABSTRACT

In this work, we present a fabrication process for microneedle sensors made of polylactic acid (PLA), which can be utilized for the electrochemical detection of various biomarkers in interstitial fluid. Microneedles were fabricated by the thermal compression molding of PLA into a laser machined polytetrafluoroethylene (PTFE) mold. Sensor fabrication was completed by forming working, counter, and reference electrodes on each sensor surface by Au sputtering through a stencil mask, followed by laser dicing to separate individual sensors from the substrate. The devised series of processes was designed to be suitable for mass production, where multiple microneedle sensors can be produced at once on a 4-inch wafer. The operational stability of the fabricated sensors was confirmed by linear sweep voltammetry and cyclic voltammetry at the range of working potentials of various biochemical molecules in interstitial fluid.

2.
ACS Appl Mater Interfaces ; 13(50): 60154-60162, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34844404

ABSTRACT

Accurate and yet cost-effective temperature measurements are required in various sectors of academia and industry. Thermocouples (TCs) are most widely used for temperature measurements; however, their low temperature sensitivity and high thermal conductivity should be improved to ensure the reliable measurement of output voltage for small temperature differences. To address this, a paper-based ionic thermocouple (P-iTC) presented here utilizes a pair of paper strips soaked with the electrolytes of potassium ferri-/ferrocyanide and iron (II/III) chloride redox couples, which are used as p- and n-type elements, respectively. The fabricated P-iTC provides 70× higher temperature sensitivity (α, 2.8 mV/K) and 30× lower thermal conductivity (k, 0.8 W/m K) than those of commercial K-type TCs, thereby yielding a remarkably high α/k ratio of 3.5 mV m/W. Reliable sensing performance is measured during three weeks of operation, which indicates that the P-iTC should be stable in long-term operation. To demonstrate the practicality of the P-iTC, a 3 × 3 planar array of P-iTCs is fabricated to monitor the temperature profile of a surface in contact with heat sources. Using pencil-drawn graphite electrodes on paper, a highly cost-effective P-iTC with the material cost of ∼0.5 cents per device is also fabricated, which is successfully used to monitor cold chain temperatures while retaining its excellent temperature-sensing performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...