Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Methods Enzymol ; 655: 325-347, 2021.
Article in English | MEDLINE | ID: mdl-34183128

ABSTRACT

Full-length transcription in the majority of protein-coding and other genes transcribed by RNA polymerase II in complex eukaryotes requires U1 snRNP (U1) to co-transcriptionally suppress transcription-terminating premature 3'-end cleavage and polyadenylation (PCPA) from cryptic polyadenylation signals (PASs). This U1 activity, termed telescripting, requires U1 to base-pair with the nascent RNA and inhibit usage of a downstream PAS. Here we describe experimental methods to determine the mechanism of U1 telescripting, involving mapping of U1 and CPA factors (CPAFs) binding locations in relation to PCPA sites, and identify U1 and CPAFs interactomes. The methods which utilizes rapid reversible protein-RNA and protein-protein chemical crosslinking, immunoprecipitations (XLIPs) of components of interest, and RNA-seq and quantitative proteomic mass spectrometry, captured U1-CPAFs complexes in cells, providing important insights into telescripting mechanism. XLIP profiling can be used for comprehensive molecular definition of diverse RNPs.


Subject(s)
Ribonucleoprotein, U1 Small Nuclear , mRNA Cleavage and Polyadenylation Factors , Polyadenylation , Proteomics , RNA , Ribonucleoprotein, U1 Small Nuclear/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism
2.
Nat Commun ; 11(1): 1, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31911652

ABSTRACT

Stimulated cells and cancer cells have widespread shortening of mRNA 3'-untranslated regions (3'UTRs) and switches to shorter mRNA isoforms due to usage of more proximal polyadenylation signals (PASs) in introns and last exons. U1 snRNP (U1), vertebrates' most abundant non-coding (spliceosomal) small nuclear RNA, silences proximal PASs and its inhibition with antisense morpholino oligonucleotides (U1 AMO) triggers widespread premature transcription termination and mRNA shortening. Here we show that low U1 AMO doses increase cancer cells' migration and invasion in vitro by up to 500%, whereas U1 over-expression has the opposite effect. In addition to 3'UTR length, numerous transcriptome changes that could contribute to this phenotype are observed, including alternative splicing, and mRNA expression levels of proto-oncogenes and tumor suppressors. These findings reveal an unexpected role for U1 homeostasis (available U1 relative to transcription) in oncogenic and activated cell states, and suggest U1 as a potential target for their modulation.


Subject(s)
Cell Movement , Neoplasms/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Cell Line, Tumor , Humans , Neoplasm Invasiveness , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/physiopathology , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , RNA Splicing , RNA, Messenger/metabolism , Ribonucleoprotein, U1 Small Nuclear/genetics
3.
Mol Cell ; 76(4): 590-599.e4, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31522989

ABSTRACT

Full-length transcription in the majority of human genes depends on U1 snRNP (U1) to co-transcriptionally suppress transcription-terminating premature 3' end cleavage and polyadenylation (PCPA) from cryptic polyadenylation signals (PASs) in introns. However, the mechanism of this U1 activity, termed telescripting, is unknown. Here, we captured a complex, comprising U1 and CPA factors (U1-CPAFs), that binds intronic PASs and suppresses PCPA. U1-CPAFs are distinct from U1-spliceosomal complexes; they include CPA's three main subunits, CFIm, CPSF, and CstF; lack essential splicing factors; and associate with transcription elongation and mRNA export complexes. Telescripting requires U1:pre-mRNA base-pairing, which can be disrupted by U1 antisense oligonucleotide (U1 AMO), triggering PCPA. U1 AMO remodels U1-CPAFs, revealing changes, including recruitment of CPA-stimulating factors, that explain U1-CPAFs' switch from repressive to activated states. Our findings outline this U1 telescripting mechanism and demonstrate U1's unique role as central regulator of pre-mRNA processing and transcription.


Subject(s)
Cell Nucleus/metabolism , Cleavage And Polyadenylation Specificity Factor/metabolism , RNA Cleavage , RNA Precursors/biosynthesis , RNA, Messenger/biosynthesis , Ribonucleoprotein, U1 Small Nuclear/metabolism , Transcription, Genetic , 3' Untranslated Regions , Active Transport, Cell Nucleus , Binding Sites , Cell Nucleus/genetics , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage Stimulation Factor/genetics , Cleavage Stimulation Factor/metabolism , HeLa Cells , Humans , Multiprotein Complexes , Poly A/metabolism , Protein Binding , RNA Precursors/genetics , RNA, Messenger/genetics , Ribonucleoprotein, U1 Small Nuclear/genetics
4.
Article in English | MEDLINE | ID: mdl-30709878

ABSTRACT

Recent observations showed that nascent RNA polymerase II transcripts, pre-mRNAs, and noncoding RNAs are highly susceptible to premature 3'-end cleavage and polyadenylation (PCPA) from numerous intronic cryptic polyadenylation signals (PASs). The importance of this in gene regulation was not previously appreciated as PASs, despite their prevalence, were thought to be active in terminal exons at gene ends. Unexpectedly, antisense oligonucleotide interference with U1 snRNA base-pairing to 5' splice sites, which is necessary for U1 snRNP's (U1) function in splicing, caused widespread PCPA in metazoans. This uncovered U1's PCPA suppression activity, termed telescripting, as crucial for full-length transcription in thousands of vertebrate genes, providing a general role in transcription elongation control. Progressive intron-size expansion in metazoan evolution greatly increased PCPA vulnerability and dependence on U1 telescripting. We describe how these observations unfolded and discuss U1 telescripting's role in shaping the transcriptome.


Subject(s)
Gene Expression Regulation/physiology , RNA, Small Nuclear/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Transcription Termination, Genetic , Animals , Humans , Introns , RNA, Small Nuclear/genetics
5.
Article in English | MEDLINE | ID: mdl-32518092

ABSTRACT

Telescripting is a fundamental cotranscriptional gene regulation process that relies on U1 snRNP (U1) to suppress premature 3'-end cleavage and polyadenylation (PCPA) in RNA polymerase II (Pol II) transcripts, which is necessary for full-length transcription of thousands of protein-coding (pre-mRNAs) and long noncoding (lncRNA) genes. Like U1 role in splicing, telescripting requires U1 snRNA base-pairing with nascent transcripts. Inhibition of U1 base-pairing with U1 snRNA antisense morpholino oligonucleotide (U1 AMO) mimics widespread PCPA from cryptic polyadenylation signals (PASs) in human tissues, including PCPA in introns and last exons' 3'-untranslated regions (3' UTRs). U1 telescripting-PCPA balance changes generate diverse RNAs depending on where in a gene it occurs. Long genes are highly U1-telescripting-dependent because of PASs in introns compared to short genes. Enrichment of cell cycle control, differentiation, and developmental functions in long genes, compared to housekeeping and acute cell stress response genes in short genes, reveals a gene size-function relationship in mammalian genomes. This polarization increased in metazoan evolution by previously unexplained intron expansion, suggesting that U1 telescripting could shift global gene expression priorities. We show that that modulating U1 availability can profoundly alter cell phenotype, such as cancer cell migration and invasion, underscoring the critical role of U1 homeostasis and suggesting it as a potential target for therapies. We describe a complex of U1 with cleavage and polyadenylation factors that silences PASs in introns and 3' UTR, which gives insights into U1 telescripting mechanism and transcription elongation regulation.

6.
Article in English | MEDLINE | ID: mdl-32651264

ABSTRACT

This summary of the 84th Cold Spring Harbor Laboratory (CSHL) Symposium on Quantitative Biology: RNA Control and Regulation, held in May 2019, highlights key emerging themes in this field, which now impacts nearly every aspect of biology and medicine. Recent discoveries accelerated by technological developments reveal enormous diversity of RNAs and RNA-binding proteins (RBPs) with ever-increasing roles in eukaryotes. Atomic structures and live-cell imaging of transcription, RNA splicing, 3'-end processing, modifications, and degradation machineries provide mechanistic insights, explaining hundreds of diseases caused by their perturbations. This great progress uncovered numerous targets for therapies, some of which have already been successfully exploited, and many opportunities for pharmacological intervention and RNA-guided genome engineering. Myriad unexplained RNAs and RBPs leave the RNA field open for many more exciting discoveries.

7.
Nucleic Acids Res ; 47(2): 929-940, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30418624

ABSTRACT

Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids onto tRNAs. To avoid mistranslation, editing mechanisms evolved to maintain tRNA aminoacylation fidelity. For instance, while rejecting the majority of non-cognate amino acids via discrimination in the synthetic active site, prolyl-tRNA synthetase (ProRS) misactivates and mischarges Ala and Cys, which are similar in size to cognate Pro. Ala-tRNAPro is specifically hydrolyzed by the editing domain of ProRS in cis, while YbaK, a free-standing editing domain, clears Cys-tRNAPro in trans. ProXp-ala is another editing domain that clears Ala-tRNAPro in trans. YbaK does not appear to possess tRNA specificity, readily deacylating Cys-tRNACysin vitro. We hypothesize that YbaK binds to ProRS to gain specificity for Cys-tRNAPro and avoid deacylation of Cys-tRNACys in the cell. Here, in vivo evidence for ProRS-YbaK interaction was obtained using a split-green fluorescent protein assay. Analytical ultracentrifugation and native mass spectrometry were used to investigate binary and ternary complex formation between ProRS, YbaK, and tRNAPro. Our combined results support the hypothesis that the specificity of YbaK toward Cys-tRNAPro is determined by the formation of a three-component complex with ProRS and tRNAPro and establish the stoichiometry of a 'triple-sieve' editing complex for the first time.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Pro/metabolism , Binding, Competitive , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Luminescent Agents , Mass Spectrometry , Ultracentrifugation
8.
Nat Struct Mol Biol ; 24(11): 993-999, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28967884

ABSTRACT

U1 snRNP (U1) functions in splicing introns and telescripting, which suppresses premature cleavage and polyadenylation (PCPA). Using U1 inhibition in human cells, we show that U1 telescripting is selectively required for sustaining long-distance transcription elongation in introns of large genes (median 39 kb). Evidence of widespread PCPA in the same locations in normal tissues reveals that large genes incur natural transcription attrition. Underscoring the importance of U1 telescripting as a gene-size-based mRNA-regulation mechanism, small genes were not sensitive to PCPA, and the spliced-mRNA productivity of ∼1,000 small genes (median 6.8 kb) increased upon U1 inhibition. Notably, these small, upregulated genes were enriched in functions related to acute stimuli and cell-survival response, whereas genes subject to PCPA were enriched in cell-cycle progression and developmental functions. This gene size-function polarization increased in metazoan evolution by enormous intron expansion. We propose that telescripting adds an overarching layer of regulation to size-function-stratified genomes, leveraged by selective intron expansion to rapidly shift gene expression priorities.


Subject(s)
Gene Expression Regulation , Genome, Human , Polyadenylation , Ribonucleoprotein, U1 Small Nuclear/metabolism , Transcription, Genetic , Humans
9.
Nat Struct Mol Biol ; 23(3): 225-30, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26828962

ABSTRACT

Despite equal snRNP stoichiometry in spliceosomes, U1 snRNP (U1) is typically the most abundant vertebrate snRNP. Mechanisms regulating U1 overabundance and snRNP repertoire are unknown. In Sm-core assembly, a key snRNP-biogenesis step mediated by the SMN complex, the snRNA-specific RNA-binding protein (RBP) Gemin5 delivers pre-snRNAs, which join SMN-Gemin2-recruited Sm proteins. We show that the human U1-specific RBP U1-70K can bridge pre-U1 to SMN-Gemin2-Sm, in a Gemin5-independent manner, thus establishing an additional and U1-exclusive Sm core-assembly pathway. U1-70K hijacks SMN-Gemin2-Sm, enhancing Sm-core assembly on U1s and inhibiting that on other snRNAs, thereby promoting U1 overabundance and regulating snRNP repertoire. SMN-Gemin2's ability to facilitate transactions between different RBPs and RNAs explains its multi-RBP valency and the myriad transcriptome perturbations associated with SMN deficiency in neurodegenerative spinal muscular atrophy. We propose that SMN-Gemin2 is a versatile hub for RNP exchange that functions broadly in RNA metabolism.


Subject(s)
Metabolic Networks and Pathways , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Humans , Models, Molecular , Ribonucleoprotein, U1 Small Nuclear/chemistry , SMN Complex Proteins/metabolism
10.
Cell ; 146(3): 384-95, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21816274

ABSTRACT

The SMN complex mediates the assembly of heptameric Sm protein rings on small nuclear RNAs (snRNAs), which are essential for snRNP function. Specific Sm core assembly depends on Sm proteins and snRNA recognition by SMN/Gemin2- and Gemin5-containing subunits, respectively. The mechanism by which the Sm proteins are gathered while preventing illicit Sm assembly on non-snRNAs is unknown. Here, we describe the 2.5 Å crystal structure of Gemin2 bound to SmD1/D2/F/E/G pentamer and SMN's Gemin2-binding domain, a key assembly intermediate. Remarkably, through its extended conformation, Gemin2 wraps around the crescent-shaped pentamer, interacting with all five Sm proteins, and gripping its bottom and top sides and outer perimeter. Gemin2 reaches into the RNA-binding pocket, preventing RNA binding. Interestingly, SMN-Gemin2 interaction is abrogated by a spinal muscular atrophy (SMA)-causing mutation in an SMN helix that mediates Gemin2 binding. These findings provide insight into SMN complex assembly and specificity, linking snRNP biogenesis and SMA pathogenesis.


Subject(s)
Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , SMN Complex Proteins/metabolism , Amino Acid Sequence , Animals , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Mutation , Nerve Tissue Proteins/genetics , RNA-Binding Proteins/genetics , Sequence Alignment
11.
J Biol Chem ; 286(36): 31810-20, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21768119

ABSTRACT

Aminoacyl-tRNA synthetases attach specific amino acids to cognate tRNAs. Prolyl-tRNA synthetases are known to mischarge tRNA(Pro) with the smaller amino acid alanine and with cysteine, which is the same size as proline. Quality control in proline codon translation is partly ensured by an editing domain (INS) present in most bacterial prolyl-tRNA synthetases that hydrolyzes smaller Ala-tRNA(Pro) and excludes Pro-tRNA(Pro). In contrast, Cys-tRNA(Pro) is cleared by a freestanding INS domain homolog, YbaK. Here, we have investigated the molecular mechanism of catalysis and substrate recognition by Hemophilus influenzae YbaK using site-directed mutagenesis, enzymatic assays of isosteric substrates and functional group analogs, and computational modeling. These studies together with mass spectrometric characterization of the YbaK-catalyzed reaction products support a novel substrate-assisted mechanism of Cys-tRNA(Pro) deacylation that prevents nonspecific Pro-tRNA(Pro) hydrolysis. Collectively, we propose that the INS and YbaK domains co-evolved distinct mechanisms involving steric exclusion and thiol-specific chemistry, respectively, to ensure accurate decoding of proline codons.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Bacterial Proteins/genetics , Codon , Haemophilus influenzae/genetics , Proline/genetics , Protein Biosynthesis , Acylation , Biocatalysis , Catalysis , Hydrolysis , Mutagenesis, Site-Directed , Protein Structure, Tertiary , RNA, Transfer, Amino Acyl , Substrate Specificity
12.
Mol Cell ; 33(5): 654-60, 2009 Mar 13.
Article in English | MEDLINE | ID: mdl-19285947

ABSTRACT

Faithful translation of the genetic code depends on the GTPase EF-Tu delivering correctly charged aminoacyl-tRNAs to the ribosome for pairing with cognate codons. The accurate coupling of cognate amino acids and tRNAs by the aminoacyl-tRNA synthetases is achieved through a combination of substrate specificity and product editing. Once released by aminoacyl-tRNA synthetases, both cognate and near-cognate aminoacyl-tRNAs were considered to be committed to ribosomal protein synthesis through their association with EF-Tu. Here we show instead that aminoacyl-tRNAs in ternary complex with EF-Tu*GTP can readily dissociate and rebind to aminoacyl-tRNA synthetases. For mischarged species, this allows resampling by the product editing pathway, leading to a reduction in the overall error rate of aminoacyl-tRNA synthesis. Resampling of mischarged tRNAs was shown to increase the accuracy of translation over ten fold during in vitro protein synthesis, supporting the presence of an additional quality control step prior to translation elongation.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Guanosine Triphosphate/metabolism , Peptide Chain Elongation, Translational , Peptide Elongation Factor Tu/metabolism , RNA, Transfer/metabolism , Transfer RNA Aminoacylation , Binding Sites , Escherichia coli/genetics , Genetic Code , Kinetics , Leucine-tRNA Ligase/metabolism , Nucleic Acid Conformation , Peptides/metabolism , Phenylalanine-tRNA Ligase/metabolism , RNA, Bacterial , RNA, Transfer/chemistry , Substrate Specificity , Tyrosine-tRNA Ligase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...