Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Tissue Bank ; 20(2): 163-172, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31062125

ABSTRACT

The purpose of the current study was to compare the effects of drying and fresh-freezing on human amniotic membrane (HAM) and amnion/chorion membrane (HACM) in terms of histological and structural characteristics and cytokine levels. HAM and HACM samples, obtained from six placentae, were investigated. HAM and HACM were dried, electron beam-irradiated (dehydration group; d-HAM/d-HACM), or fresh-frozen (freezing group; f-HAM/f-HACM). Luminex assay was used to assay the levels of 15 cytokines. The ultrastructural characteristics of HAM and HACM were evaluated using light and transmission electron microscopies. Total cytokine contents did not show the statistical difference between dehydration and fresh-freezing process. Significantly higher levels of total cytokines were observed in HACM than in HAM. Epidermal growth factor (EGF) level was significantly higher in d-HAM than in the other samples. The levels of most of the other growth factors were higher in HACM than in HAM, but there was no statistical difference between the dehydration process and the fresh-freezing process. The levels of the cytokines, other than the growth factors, were higher in HACM than in HAM, and higher concentrations of cytokines were observed in the freezing group than in the dehydration group. Histological examination revealed that the dehydration group had thinner tissues than the freezing group, but the structural stability, including the basement membrane, did not differ between the two groups. Microscopic structures such as microvilli and nuclei were well-preserved in the freezing group, based on the results of the transmission electron microscopy. Our dehydration process maintained the histological structure of HAM/HACM and a variety of growth factors and cytokines were identified. Especially, the HAM, processed with the dehydration method, had a higher EGF level than that processed with the fresh-freezing method. Therefore, dehydration method can be used to effectively promote wound repair.


Subject(s)
Amnion/metabolism , Chorioallantoic Membrane/metabolism , Chorion/metabolism , Cryopreservation/methods , Cytokines/analysis , Placenta/metabolism , Amnion/radiation effects , Chorioallantoic Membrane/radiation effects , Chorion/radiation effects , Desiccation , Electrons , Epidermal Growth Factor/analysis , Female , Freeze Drying , Humans , Microscopy, Electron, Transmission , Placenta/radiation effects , Pregnancy
2.
J Mater Sci Mater Med ; 27(11): 162, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27646404

ABSTRACT

Poloxamer-based thermo-sensitive sol-gel has been developed to reduce the incidence of postoperative scar formation at the laminectomy site. The purpose of this study was to evaluate the anti-adhesive effect of poloxamer based thermo-sensitive sol-gel compared to hyaluronate based solution after laminectomy, using a rabbit model. A thermo-sensitive anti-adhesive with a property of sol-gel transition was manufactured by a physical mixture of Poloxamer188/407, Chitosan and Gelatin. The viscosity in different temperatures was assessed. 72 adult New Zealand rabbits underwent lumbar laminectomy and were randomly divided into experimental (treated with the newly developed agent), positive (treated with hyaluronate based solution), and negative control groups. Each group was subdivided into 1 and 4-week subgroups. Gross and histological evaluations were performed to assess the extent of epidural adhesion. The experimental group showed significantly higher viscosity compared to the positive control group and showed a significant increase of viscosity as the temperature increased. Gross evaluation showed no statistically significant differences between the 1- and 4-week subgroups. However, histologic evaluation showed significant differences both in 1- and 4-week subgroups. Although the 4-week histologic results of the experimental and the positive control subgroups showed no significant difference, both subgroups revealed higher value compared to the negative control subgroup with regard to the ratio of adhesion less than 50 %. The new poloxamer based thermo-sensitive agent showed superior efficacy over the hyaluronate based agent at 1 week postoperatively. At 4 weeks postoperatively, there were no statistically significant differences between the two agents, although both showed efficacy over the sham group.


Subject(s)
Cicatrix/prevention & control , Laminectomy/methods , Poloxamer/chemistry , Tissue Adhesions/prevention & control , Adhesiveness , Animals , Cell Adhesion , Chitosan/chemistry , Epidural Space/metabolism , Gelatin/chemistry , Hyaluronic Acid/chemistry , Male , Phase Transition , Postoperative Complications , Rabbits , Temperature , Tissue Adhesions/pathology , Viscosity
3.
J Mech Behav Biomed Mater ; 30: 214-22, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24333672

ABSTRACT

This study investigates and compares the microstructure, biocompatibility, and tribological properties of two different Ti-based composites, Ti-10W and Ti-7.5TiC-7.5W, with those of pure Ti for their potential use in biomedical applications. In particular, cold and hot isostatic-pressing and arc-melting methods were utilized and compared for the microstructure of the composites. Nano-scratch measurements and pin-on-disk wear tests were employed to understand their tribological behavior. As compared to pure Ti, Ti-10W and Ti-7.5TiC-7.5W showed significantly improved nano-scratch resistance (by 85 and 77%, respectively) and wear resistance (by 64 and 66%, respectively), in good agreement with hardness measurements. For biocompatibility examination, both microculture tetrazolium test (MTT) and water soluble tetrazolium (WST-1) test were used to quantify the cell viability of human osteoblasts and mouse fibroblasts on the materials. Both of the Ti-based composites showed acceptable biocompatibility in comparison with the pure Ti control.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Materials Testing , Titanium/chemistry , Tungsten/chemistry , Animals , Biocompatible Materials/toxicity , Cell Line , Cell Survival/drug effects , Humans , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...