Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Brain Res Bull ; 208: 110903, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367676

ABSTRACT

Chronic stress is a pervasive and complex issue that contributes significantly to various mental and physical health disorders. Using the previously established chronic unpredictable stress (CUS) model, which simulates human stress situations, it has been shown that chronic stress induces major depressive disorder (MDD) and memory deficiency. However, this established model is associated with several drawbacks, such as limited research reproducibility and the inability to sustain stress response. To resolve these issues, we developed a new CUS model (CUS+C) that included exogenous corticosterone exposure to induce continuous stress response. Thereafter, we evaluated the effect of this new model on brain health. Thus, we observed that the use of the CUS+C model decreased body and brain weight gain and induced an uncontrolled coat state as well as depressive-like behavior in adult mice. It also impaired learning memory function and cognitive abilities, reduced adult hippocampal neurogenesis as well as the number of hippocampal astrocytes, and downregulated glial fibrillary acidic protein expression in the brains of adult mice. These findings can promote the utilization and validity of the animal stress model and provide new information for the treatment of chronic stress-induced depressive and memory disorders.


Subject(s)
Corticosterone , Depressive Disorder, Major , Humans , Mice , Animals , Corticosterone/pharmacology , Corticosterone/metabolism , Depressive Disorder, Major/metabolism , Astrocytes/metabolism , Reproducibility of Results , Hippocampus/metabolism , Neurogenesis/physiology , Stress, Psychological , Depression/metabolism , Disease Models, Animal
2.
Neurotoxicology ; 99: 206-216, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918694

ABSTRACT

As plastic production has been increasing steadily, environmental pollution resulting from microplastics (MPs) continues to draw considerable attention of the researchers. Several studies have reported that MPs are risk factors for various cellular and systemic dysfunctions. However, the effects of chronic MP exposure from the embryonic stage to adulthood on mouse brain remain unclear. Accordingly, determining the impacts of maternal exposure to MPs on mouse offspring was the main goal of this study. To this end, single cells of primary cortical neurons were isolated from mouse embryos. Subsequently, the cells were exposed to 2 µm polystyrene microplastics (PS-MPs), which resulted in a notable reduction in dendritic length, and PS-MPs cannot pass through the cellular membrane of neurons. Moreover, exposure to PS-MPs caused the proliferation increase and apoptosis in primary cortical neuronal cells. We then evaluated the neurotoxicity associated with chronic PS-MP exposure from the embryonic stage to adulthood in C57BL/6 J mouse offspring. PS-MPs were found to accumulate in the digestive and excretory organs of the offspring but not in the brain tissue. However, offspring exposed to PS-MPs exhibited no differences in the levels of expression of genes related to brain cell markers or synaptic organization. Nevertheless, PS-MP-exposed mice exhibited impaired social novelty preferences; however, no changes were observed in the emotional, compulsive, or cognitive behaviors. Taken together, these results demonstrate the potential neurotoxic effects of chronic exposure to PS-MPs in mouse offspring.


Subject(s)
Neurotoxicity Syndromes , Water Pollutants, Chemical , Female , Humans , Animals , Mice , Mice, Inbred C57BL , Maternal Exposure/adverse effects , Microplastics , Plastics , Polystyrenes/toxicity , Social Behavior
3.
J Hazard Mater ; 454: 131465, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37130475

ABSTRACT

In the era of plastic use, organisms are constantly exposed to polystyrene particles (PS-Ps). PS-Ps accumulated in living organisms exert negative effects on the body, although studies evaluating their effects on brain development are scarce. In this study, the effects of PS-Ps on nervous system development were investigated using cultured primary cortical neurons and mice exposed to PS-Ps at different stages of brain development. The gene expression associated with brain development was downregulated in embryonic brains following PS-Ps exposure, and Gabra2 expression decreased in the embryonic and adult mice exposed to PS-Ps. Additionally, offspring of PS-Ps-treated dams exhibited signs of anxiety- and depression-like behavior, and abnormal social behavior. We propose that PS-Ps accumulation in the brain disrupts brain development and behavior in mice. This study provides novel information regarding PS-Ps toxicity and its harmful effects on neural development and behavior in mammals.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Animals , Mice , Polystyrenes/toxicity , Polystyrenes/metabolism , Depression/chemically induced , Water Pollutants, Chemical/toxicity , Anxiety/chemically induced , Social Behavior , Nanoparticles/toxicity , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...