Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35887331

ABSTRACT

Catechol is a ubiquitous chemical used in the manufacturing of fragrances, pharmaceuticals and flavorants. Environmental exposure occurs in a variety of ways through industrial processes, during pyrolysis and in effluent, yet despite its prevalence, there is limited information regarding its toxicity. While the genotoxicity and gastric carcinogenicity of catechol have been described in depth, toxicological studies have potentially overlooked a number of other effects relevant to humans. Here, we have made use of a general and behavioral larval zebrafish toxicity assay to describe previously unknown catechol-based toxicological phenomena. Behavioral testing revealed catechol-induced hypoactivity at concentrations an order of magnitude lower than observable endpoints. Catechol exposure also resulted in punctate melanocytes with concomitant decreases in the expression of pigment production and regulation markers mitfa, mc1r and tyr. Because catechol is converted into a number of toxic metabolites by tyrosinase, an enzyme found almost exclusively in melanocytes, an evaluation of the effects of catechol on these cells is critical to evaluating the safety of this chemical. This work provides insights into the toxic nature of catechol and highlights the benefits of the zebrafish larval testing platform in being able to dissect multiple aspects of toxicity with one model.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Catechols/toxicity , Embryo, Nonmammalian , Humans , Larva , Water Pollutants, Chemical/toxicity , Zebrafish/physiology
2.
PLoS One ; 9(12): e115305, 2014.
Article in English | MEDLINE | ID: mdl-25526262

ABSTRACT

The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products.


Subject(s)
Cardiotoxicity/physiopathology , Disease Models, Animal , Neurotoxicity Syndromes/physiopathology , Smoking/adverse effects , Zebrafish Proteins/genetics , Zebrafish/growth & development , Animals , Canada , Cardiotoxicity/genetics , Humans , Larva/drug effects , Mutagenicity Tests , Neurotoxicity Syndromes/genetics , Tobacco Smoke Pollution/adverse effects , Toxicogenetics/methods , Zebrafish/genetics
3.
J Proteome Res ; 10(11): 5102-17, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21910437

ABSTRACT

One of the greatest strengths of "-omics" technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously. Transcriptomics, proteomics, and metabolomics have, individually, been used in wide-ranging studies involving cell lines, tissues, model organisms, and human subjects. Nonetheless, despite the fact that their power lies in the global acquisition of parallel data streams, these methods continue to be employed separately. We highlight work done to merge transcriptomics and metabolomics technologies to study zebrafish (Danio rerio) embryogenesis. We combine information from three bioanalytical platforms, that is, DNA microarrays, (1)H nuclear magnetic resonance ((1)H NMR), and mass spectrometry (MS)-based metabolomics, to identify and provide insights into the organism's developmental regulators. We apply a customized approach to the analysis of such time-ordered measurements to provide temporal profiles that depict the modulation of metabolites and gene transcription. Initially, the three data sets were analyzed individually but later they were fused to highlight the advantages gained through such an integrated approach. Unique challenges posed by fusion of such data are discussed given differences in the measurement error structures, the wide dynamic range for the molecular species, and the analytical platforms used to measure them (i.e., fluorescence ratios, NMR, and MS intensities). Our data analysis reveals that changes in transcript levels at specific developmental stages correlate with previously published data with over 90% accuracy. In addition, transcript profiles exhibited trends that were similar to the accumulation of metabolites over time. Profiles for metabolites such as choline-like compounds (Trimethylamine-N-oxide, phosphocholine, betaine), creatinine/creatine, and other metabolites involved in energy metabolism exhibited a steady increase from 15 hours post fertilization (hpf) to 48 hpf. Other metabolite and transcript profiles were transiently rising and then falling back to baseline. The "house keeping" metabolites such as branched chain amino acids exhibited a steady presence throughout embryogenesis. Although the transcript profiling corresponds to only 16 384 genes, a subset of the total number of genes in the zebrafish genome, we identified examples where gene transcript and metabolite profiles correlate with one another, reflective of a relationship between gene and metabolite regulation over the course of embryogenesis.


Subject(s)
Oligonucleotide Array Sequence Analysis , Zebrafish/embryology , Algorithms , Amino Acids/metabolism , Animals , Blastula/metabolism , Fish Proteins/genetics , Gastrula/metabolism , Gene Expression , Gene Expression Profiling , Magnetic Resonance Spectroscopy , Metabolomics , Multivariate Analysis , Principal Component Analysis , Zebrafish/genetics , Zebrafish/metabolism
4.
Dis Model Mech ; 4(5): 622-33, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21729875

ABSTRACT

The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of action. Cytotoxicities were assessed in vitro using cell-based assays and in vivo using zebrafish embryos. Morphological changes were assessed by both transmission and scanning electron microscopy, and functional assays were performed on zebrafish embryos to investigate the mechanism of cell death. A total of 14 peptides were virtually inactive against HL60 human leukemia cells, whereas 12 caused >50% death at ≤32 µg/ml. Morphological changes characteristic of oncosis were evident by electron microscopy after only 1 minute of treatment with 32 µg/ml of variant NRC-03. Only two peptides were hemolytic. Four peptides showed no toxicity towards zebrafish embryos at the highest concentration tested (25 µM; ∼64 µg/ml) and one peptide was highly toxic, killing 4-hour-post-fertilization (hpf) embryos immediately after exposure to 1 µM peptide. Four other peptides killed embryos after 24 hours of exposure at 1 µM. Most peptides caused mortality at one or more developmental stages only after continuous exposure (24 hours) with higher lethal doses (≥5 µM). Pleurocidin NRC-03 bound to embryos and induced the release of superoxide, caused an increase in the number of TUNEL-positive nuclei, and caused membrane damage and the loss of embryonic epithelial integrity, marked by the exclusion of cells from the outer epithelium and the appearance of F-actin within the circumferential cells of the repair site. Our results indicate that specific pleurocidin variants are attractive cancer-selective agents that selectively induce cell death in target cells but leave non-target cells such as erythrocytes and non-transformed cells unaffected.


Subject(s)
Antineoplastic Agents/analysis , Fish Proteins/analysis , Peptides/analysis , Zebrafish/embryology , Amino Acid Sequence , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Cell Death/drug effects , DNA Fragmentation/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/pathology , Embryo, Nonmammalian/ultrastructure , Fish Proteins/chemistry , Fish Proteins/toxicity , HL-60 Cells , Humans , Models, Biological , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Peptides/toxicity , Sequence Analysis, Protein
5.
Protein Expr Purif ; 59(1): 38-46, 2008 May.
Article in English | MEDLINE | ID: mdl-18272393

ABSTRACT

The Atlantic salmon C-type lectin receptor C (SCLRC) locus encodes a potential oligomeric type II receptor. C-type lectins recognize carbohydrates in a Ca(2+)-dependent manner through structurally conserved, yet functionally diverse, C-type lectin-like domains (CTLDs). Many conserved amino acids in animal CTLDs are present in SCLRC, with the notable exception of an asparagine crucially involved in Ca(2+)- and carbohydrate-binding, which is tyrosine in SCLRC. SCLRC also contains six cysteines that form three disulfide bonds. Although SCLRC was originally identified as an up-regulated transcript responding to Aeromonas salmonicida infection, the biological role of this protein is still unknown. To study the structure and ligand binding properties of SCLRC, we created a homology model of the 17kDa CTLD and produced it as an affinity-tagged protein in the periplasm of Escherichia coli by co-expression of proteins that facilitate disulfide bond formation. The recombinant form of SCLRC was characterized by a protease protection assay, a solid-phase carbohydrate-binding assay, and frontal affinity chromatography. On the basis of this characterization, we classify SCLRC as a C-type lectin that binds to mannose and its derivatives.


Subject(s)
Lectins, C-Type/biosynthesis , Lectins, C-Type/isolation & purification , Protein Structure, Tertiary , Amino Acid Sequence , Animals , Base Sequence , Calcium/pharmacology , Chromatography, Affinity , Escherichia coli/metabolism , Galactose/metabolism , Lectins, C-Type/metabolism , Mannose/metabolism , Models, Molecular , Molecular Sequence Data , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Salmo salar , Sequence Alignment , Trypsin/metabolism
6.
Dev Biol ; 278(2): 459-72, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15680363

ABSTRACT

The Drosophila melanogaster genes midline and H15 encode predicted T-box transcription factors homologous to vertebrate Tbx20 genes. All identified vertebrate Tbx20 genes are expressed in the embryonic heart and we find that both midline and H15 are expressed in the cardioblasts of the dorsal vessel, the insect organ equivalent to the vertebrate heart. The midline mRNA is first detected in dorsal mesoderm at embryonic stage 12 in the two progenitors per hemisegment that will divide to give rise to all six cardioblasts. Expression of H15 mRNA in the dorsal mesoderm is detected first in four to six cells per hemisegment at stage 13. The expression of midline and H15 in the dorsal vessel is dependent on Wingless signaling and the transcription factors tinman and pannier. We find that the selection of two midline-expressing cells from a pool of competent progenitors is dependent on Notch signaling. Embryos deleted for both midline and H15 have defects in the alignment of the cardioblasts and associated pericardial cells. Embryos null for midline have weaker and less penetrant phenotypes while embryos deficient for H15 have morphologically normal hearts, suggesting that the two genes are partially redundant in heart development. Despite the dorsal vessel defects, embryos mutant for both midline and H15 have normal numbers of cardioblasts, suggesting that cardiac cell fate specification is not disrupted. However, ectopic expression of midline in the dorsal mesoderm can lead to dramatic increases in the expression of cardiac markers, suggesting that midline and H15 participate in cardiac fate specification and may normally act redundantly with other cardiogenic factors. Conservation of Tbx20 expression and function in cardiac development lends further support for a common ancestral origin of the insect dorsal vessel and the vertebrate heart.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Heart/embryology , T-Box Domain Proteins/genetics , Animals , Body Patterning/genetics , Drosophila melanogaster/cytology , Embryo, Nonmammalian/physiology , In Situ Hybridization , Morphogenesis/genetics
7.
Immunogenetics ; 56(8): 572-84, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15490154

ABSTRACT

The diverse receptors of the C-type lectin superfamily play key roles in innate immunity. In mammals, cell surface receptors with C-type lectin domains are involved in pathogen recognition and in immune response, and in some cases are exploited by pathogens to gain entry into cells. This study reports on sequence and expression analysis of three paralogous group II C-type lectins from the teleost fish Atlantic salmon (Salmo salar). Each of the receptors showed similarity to immune-relevant mammalian receptors in terms of amino acid sequence and overall organization within the C-type lectin-like domain (CTLD). Two of the three have cytoplasmic motifs consistent with the immunoreceptor tyrosine-based activation motifs (ITAM), which are known to modulate downstream functions in leukocytes. All three C-type lectin receptors were expressed in multiple tissues of healthy fish, including peripheral blood leukocytes and salmon head kidney cells (SHK-1). Each receptor was up-regulated in salmon liver in response to infection by Aeromonas salmonicida and one receptor was substantially up-regulated in cultured SHK-1 cells in response to lipopolysaccharide (LPS). Putative binding sites for the CAAT-enhancer-binding protein (C/EBP) family of transcription factors in the regulatory regions of these C-type lectin genes may mediate their response to bacteria and LPS in salmon leukocytes. The identification of these types of receptors in distinct populations of cells within the immune system will provide important markers for identifying and categorizing the state of differentiation or activation of these cells and lead to further understanding of the interaction between the salmon host and multiple pathogens.


Subject(s)
Lectins, C-Type/genetics , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , CCAAT-Enhancer-Binding Proteins/metabolism , Cloning, Molecular , Lectins, C-Type/chemistry , Molecular Sequence Data , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Salmo salar
8.
Genetics ; 163(4): 1365-73, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12702681

ABSTRACT

Considerable evidence indicates an obligate partnership of the Drosophila melanogaster Vestigial (VG) and Scalloped (SD) proteins within the context of wing development. These two proteins interact physically and a 56-amino-acid motif within VG is necessary and sufficient for this binding. While the importance of this SD-binding domain has been clearly demonstrated both in vitro and in vivo, the remaining portions of VG have not been examined for in vivo function. Herein, additional regions within VG were tested for possible in vivo functions. The results identify two additional domains that must be present for optimal VG function as measured by the loss of ability to rescue vg mutants, to induce ectopic sd expression, and to perform other normal VG functions when they are deleted. An in vivo study such as this one is fundamentally important because it identifies domains of VG that are necessary in the cellular context in which wing development actually occurs. The results also indicate that an additional large portion of VG, outside of these two domains and the SD-binding domain, is dispensable in the execution of these normal VG functions.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Nuclear Proteins/genetics , Wings, Animal/growth & development , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...