ABSTRACT
This study examines alterations in the plasma proteome in ten adults affected by sepsis caused by Acinetobacter baumannii as compared to paired healthy controls. 2-DE profiles of plasma from patients and paired healthy donors, depleted of the six most abundant proteins, were analysed by the DIGE technique. Protein spot detection and quantification were performed with the Differential In-gel Analysis and Biological Variation Analysis modules of the DeCyder() software. Differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) after colloidal Coomassie blue staining. Almost 900 spots were detected on a unique 2-D gel by the DIGE technique. A total of 269 protein spots of differential abundance were shown to be statistically significant (2.5-fold) with p values of p< or =0.01 (135 spots) and p< or =0.05 (134 spots) as determined by the t test. Seventy-one spots were submitted to mass spectrometry and about 30% could be successfully identified. This multiplex approach significantly reduced experimental variability, allowing for the confident detection of small differences in protein levels. Results include differentially expressed lipoproteins as well as proteins belonging to inflammatory/coagulation pathways and the kallikrein-kinin system. These data improves the knowledge for future developments in sepsis diagnosis, staging and therapy.
Subject(s)
Acinetobacter baumannii , Blood Proteins/analysis , Proteomics/methods , Sepsis/blood , Case-Control Studies , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation , Humans , Proteome/analysis , Sepsis/microbiology , Software , Spectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationABSTRACT
JUSTIFICATIVA E OBJETIVOS: O diagnóstico e o tratamento da sepse continuam a desafiar a todos; e desenvolver formas mais precisas de abordagem são absolutamente necessárias. O objetivo deste estudo foi empregar técnicas proteômicas, eletroforese bidimensional e espectrometria de massa, para verificar a expressão diferencial de proteínas, em soro de pacientes com sepse comparado com controles saudáveis. MÉTODO: Amostras de soro de 30 pacientes com sepse, causada por vários tipos de microorganismos e de 30 controles saudáveis foram obtidas para análise. A seguir, foram submetidas a 2D-SDS-PAGE, comparação entre géis, seleção de spots para excisão e digestão com tripsina, sendo os peptídeos analisados por MALDI TOF-TOF. Os espectros obtidos foram processados (Mascot-matrixscience) para identificação de proteínas no NCBInr Data Bank. RESULTADOS: A análise das imagens mostrou vários spots com expressão diferencial nos géis dos pacientes com sepse em relação aos controles. A identificação de proteínas em alguns destes spots encontrou: precursor Orosomucoide 1, Apolipoproteína A-IV, precursor Apolipoproteína A-IV, precursor Haptoglobina, Haptoglobina, proteína Zinc finger, Amilóide sérico A-1, Transtiretina, Nebulin, Complemento C4, Alfa1-Antitripsina, produto protéico não nominado e outros. CONCLUSÕES: Soros de pacientes com diferentes tipos de sepse expressam padrão protéico característico por 2D-SDS-PAGE comparado com controles. A maior expressão foi de proteínas de fase aguda e lipoproteínas. É possível que no futuro, com a proteômica, criar painel diagnóstico de proteínas, encontrar novos biomarcadores e alvos para intervenção terapêutica na sepse. Esta é a primeira descrição, com a proteômica, das alterações na expressão protéica, no soro de pacientes com sepse.
BACKGROUND AND OBJECTIVES: The diagnostic and treatment of sepsis continue to challenger all, and, more specific forms to approach are absolutely necessary. The objective of this study was to use proteomics techniques, two-dimensional electrophoresis and mass spectrometry, to verify the differential protein expression between serum of patients with sepsis and health controls. METHODS: Samples of serum the 30 patients with sepsis, caused for different types of microorganisms and serum of 30 health controls were obtained for analysis. Next, were submitted to 2D-SDS-PAGE, gels compared, selection of spots for excision and digestion with trypsin, being the peptides analyzed for MALDI TOF-TOF. The obtained spectrums were processed (Mascot-matrix science) for protein identification in NCBInr Data Bank. RESULTS: Image analyses showed several spots with differential expressions in the gels of the patients with sepsis in relation to the controls. The protein identification of some of these spots founded: Orosomucoid 1 precursor, Apolipoprotein A-IV, Apolipoprotein A-IV precursor, Haptoglobin protein precursor, Haptoglobin, Zinc finger protein, Serum amyloid A-1, Transthyretin, Nebulin, Complement C4, Alpha1-Antitrypsin, Unnamed protein product and others. CONCLUSIONS: Serum of the patients with different types of sepsis express characteristic protein profiles by 2D-SDS-PAGE compared with controls. The most expressed were from acute phase proteins and lipoproteins. It is possible in the future, with proteomics, create diagnostic panel of proteins, finding news biomarkers and targets for therapeutic interventions in sepsis. This is a first description, with proteomics, of the alterations in protein expression, in serum of the patients with sepsis.
Subject(s)
Humans , Male , Female , Proteomics/trends , Sepsis/diagnosisABSTRACT
BACKGROUND AND OBJECTIVES: The diagnostic and treatment of sepsis continue to challenger all, and, more specific forms to approach are absolutely necessary. The objective of this study was to use proteomics techniques, two-dimensional electrophoresis and mass spectrometry, to verify the differential protein expression between serum of patients with sepsis and health controls. METHODS: Samples of serum the 30 patients with sepsis, caused for different types of microorganisms and serum of 30 health controls were obtained for analysis. Next, were submitted to 2D-SDS-PAGE, gels compared, selection of spots for excision and digestion with trypsin, being the peptides analyzed for MALDI TOF-TOF. The obtained spectrums were processed (Mascot-matrix science) for protein identification in NCBInr Data Bank. RESULTS: Image analyses showed several spots with differential expressions in the gels of the patients with sepsis in relation to the controls. The protein identification of some of these spots founded: Orosomucoid 1 precursor, Apolipoprotein A-IV, Apolipoprotein A-IV precursor, Haptoglobin protein precursor, Haptoglobin, Zinc finger protein, Serum amyloid A-1, Transthyretin, Nebulin, Complement C4, Alpha1-Antitrypsin, Unnamed protein product and others. CONCLUSIONS: Serum of the patients with different types of sepsis express characteristic protein profiles by 2D-SDS-PAGE compared with controls. The most expressed were from acute phase proteins and lipoproteins. It is possible in the future, with proteomics, create diagnostic panel of proteins, finding news biomarkers and targets for therapeutic interventions in sepsis. This is a first description, with proteomics, of the alterations in protein expression, in serum of the patients with sepsis.