Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
PeerJ ; 11: e15731, 2023.
Article in English | MEDLINE | ID: mdl-37601267

ABSTRACT

Marine biofouling is a natural process by which many organisms colonize and grow in submerged structures, causing serious economic consequences for the maritime industry. Geniculate calcareous algae (GCA; Corallinales, Rhodophyta) produce bioactive secondary metabolites and are a promise for new antifouling compounds. Here, we investigated the antifouling activity of four GCA species-Amphiroa beauvoisii, Jania sagittata (formerly Cheilosporum sagittatum), Jania crassa, and Jania prolifera (formerly Amphiroa flabellata)-from the Brazilian coast against macro- and microorganisms. Simultaneously, metabolomic tools were applied to assess the chemical profiles of these seaweeds using gas chromatography coupled to mass spectrometry (GC-MS). Data analysis by principal component and molecular networking analyses used the global natural products social molecular networking platform (GNPS). Our results showed that all extracts were active against different strains of marine bacteria and that the J. sagittata (JsSI) extract showed the highest percentage of bacterial inhibition. The J. sagittata (JsSI) extract was the most active against the mussel Perna perna, showing 100% byssus inhibition. Regarding toxicity, only the J. crassa (JcP) extract showed a 20% mortality rate. The chemical profiles of the evaluated GCA extracts differed qualitatively and quantitatively. Yet, the steroid (3ß)-cholest-5-en-3-ol was the major compound commonly identified in all extracts, with the exception of J. sagittata (JsSI). Moreover, we observed intra- and interspecific chemical variabilities among GCA extracts for the different populations, which could explain their antifouling activity variability. This study contributed new information about the chemical compounds produced by this group of seaweeds and showed its antifouling potential. These GCA species may be the subject of future studies to obtain new bioactive compounds with biotechnological potential in maritime areas.


Subject(s)
Biofouling , Rhodophyta , Seaweed , Animals , Brazil , Biofouling/prevention & control , Plant Extracts/pharmacology
2.
J Toxicol Environ Health A ; 86(14): 479-490, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37246633

ABSTRACT

The development of new drugs through studies of candidate molecules is a complex undertaking; however, computational or in silico approaches aimed at optimizing molecules with greater development potential are being utilized for predictions of pharmacokinetic properties such as absorption, distribution, metabolism and excretion (ADME) as well as toxicological parameters. The objective of this study was to examine in silico and in vivo pharmacokinetic and toxicological properties of the chemical constituents present in the essential oil of Croton heliotropiifolius Kunth leaves. The following Pubchem platform as well as Software SwissADME and PreADMET software were employed for in silico studies while micronucleus (MN) testing for in vivo determination of mutagenicity, using Swiss adult male Mus musculus mice. In silico findings demonstrated that all chemical constituents presented (1) high oral absorption (2) medium cellular permeability and (3) high blood brain permeability. As for toxicity, these chemical constituents exhibited low to medium risk of occurrence of cytotoxicity. Regarding in vivo evaluation, peripheral blood samples obtained from animals tested with the oil showed no significant differences in number of MN compared to negative controls. Data indicate that further investigations are necessary to corroborate the findings of this study. Our data suggest that essential oil extracted from Croton heliotropiifolius Kunth leaves may serve as a candidate for new drug development.


Subject(s)
Croton , Oils, Volatile , Male , Animals , Mice , Oils, Volatile/toxicity , Croton/chemistry , Brain , Plant Leaves/toxicity , Plant Leaves/chemistry
3.
Mar Drugs ; 21(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37103363

ABSTRACT

Naegleria fowleri is an opportunistic protozoon that can be found in warm water bodies. It is the causative agent of the primary amoebic meningoencephalitis. Focused on our interest to develop promising lead structures for the development of antiparasitic agents, this study was aimed at identifying new anti-Naegleria marine natural products from a collection of chamigrane-type sesquiterpenes with structural variety in the levels of saturation, halogenation and oxygenation isolated from Laurencia dendroidea. (+)-Elatol (1) was the most active compound against Naegleria fowleri trophozoites with IC50 values of 1.08 µM against the ATCC 30808™ strain and 1.14 µM against the ATCC 30215™ strain. Furthermore, the activity of (+)-elatol (1) against the resistant stage of N. fowleri was also assessed, showing great cysticidal properties with a very similar IC50 value (1.14 µM) to the one obtained for the trophozoite stage. Moreover, at low concentrations (+)-elatol (1) showed no toxic effect towards murine macrophages and could induce the appearance of different cellular events related to the programmed cell death, such as an increase of the plasma membrane permeability, reactive oxygen species overproduction, mitochondrial malfunction or chromatin condensation. Its enantiomer (-)-elatol (2) was shown to be 34-fold less potent with an IC50 of 36.77 µM and 38.03 µM. An analysis of the structure-activity relationship suggests that dehalogenation leads to a significant decrease of activity. The lipophilic character of these compounds is an essential property to cross the blood-brain barrier, therefore they represent interesting chemical scaffolds to develop new drugs.


Subject(s)
Laurencia , Naegleria fowleri , Sesquiterpenes , Spiro Compounds , Animals , Mice , Laurencia/chemistry , Spiro Compounds/pharmacology , Sesquiterpenes/pharmacology
4.
An Acad Bras Cienc ; 95(2): e20211002, 2023.
Article in English | MEDLINE | ID: mdl-36820761

ABSTRACT

The number of deaths associated with cardiovascular diseases (CVD) increases every year, leading to an intense search for new compounds that may be employed as anticoagulants. One of the classes of bioprospected molecules comprises sulfated polysaccharides (SP) from seaweed, as heparin displays many adverse effects associated with its use. The present study aimed to characterize and evaluate the anticoagulant potential of SP extracted from the green algae Halimeda opuntia. Four PS-rich fractions, F23, F44, F60 and F75, were obtained by proteolytic digestion in papain followed by ethanol precipitation. The presence of SP was confirmed by agarose gel electrophoresis, revealing different populations in each fraction. The F44 fraction is noteworthy compared to the other fractions, presenting a 5% yield compared to the initial algae weight and anticoagulant activity revealed by the activated partial thromboplastin time (APTT) assay (intrinsic/common coagulation pathway). Surprisingly, F44 purification (SP peak P1F44) resulted in prothrombin time (PT) activity (extrinsic coagulation pathway) at a 160 µg/mL, in addition to enhanced APTT activity. The P1F44 anticoagulant activity mechanism was shown to be dependent on two coagulations factors, IIa and Xa, more potent via IIa. Future assessments will be performed to assess this fraction in the medical clinic.


Subject(s)
Chlorophyta , Opuntia , Seaweed , Galactans , Sulfates , Anticoagulants , Polysaccharides
5.
An Acad Bras Cienc ; 94(suppl 4): e20211585, 2022.
Article in English | MEDLINE | ID: mdl-36515327

ABSTRACT

Different solvent extracts from Aphanothece halophytica (A. halophytica) were evaluated for their cytotoxic effects against four human cancer cell lines. The samples demonstrated different percentages of cyanobacteria species populations. The samples containing 100% A. halophytica and 90% A. halophytica showed a significant cytotoxic effect in human breast cancer cells MDA231. The cytostatic effect was demonstrated in MDA231 and human glioblastoma T98G cells regardless of the treatment, resulting in a significant cell cycle arrest in the S phase. The chemical profiles of the extracts were proven to be diverse in qualitative and quantitative compositions. This variability was dependent on the A. halophytica´s abundance in each extract. The 100% A. halophytica extract induced cytotoxic and cytostatic effects in breast cancer cells, and those could be associated with the predominance of fatty acids, hydrocarbons and phthalates, indicating that A. halophytica is an interesting source of novel compound with anticancer effect.


Subject(s)
Breast Neoplasms , Cyanobacteria , Cytostatic Agents , Humans , Female , Cytostatic Agents/pharmacology , Cytostatic Agents/metabolism , Cyanobacteria/metabolism
6.
Nat Prod Res ; 36(8): 2149-2153, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33222553

ABSTRACT

Caulerpin is a bisindolic alkaloid that has been obtained from many species of the genus Caulerpa. The main objective of this paper is to evaluate four extraction methods of caulerpin in the C. racemosa: maceration (DMA), Soxhlet extraction (SOX), ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE). The methods were compared through caulerpin content quantified by Ultraviolet-visible (UV-vis) spectrophotometry. The highest extract yield was obtained by SOX but the highest contain of caulerpin was presented in the MAE extract. The caulerpin content was significant different within the extacts by MAE and UAE, it yielded by MAE more than three times as much as UAE. The most efficient caulerpin extraction method had the parameters solvent, temperature and time optimised. Thus, the best conditions were achieved with MAE in ethanol during 7 min at 90 °C. Therefore, this work suggests an improved routine analysis of caulerpin by the green chemistry concept.


Subject(s)
Caulerpa , Caulerpa/chemistry , Indoles/chemistry , Microwaves , Solvents/chemistry
7.
PeerJ ; 9: e12031, 2021.
Article in English | MEDLINE | ID: mdl-34616600

ABSTRACT

Several experimental studies on aquatic plants have reported the prevalence of chemical defense mechanism against herbivory, as opposed to structural, life-forms or other traits. Here, our laboratory feeding experiments and integrative analysis explored the relationship among palatability (fresh or reconstituted plants used as artificial diet) and various chemical/nutritional traits (i.e., contents of dry mass, ash, nitrogen, protein, and phenols) of diverse aquatic plants and their susceptibility to consumption by the generalist gastropod Biomphalaria glabrata. Biomphalaria glabrata consumed all of the assayed aquatic plants in a hierarchical yet generalized way, with the consumption of fresh plants, their reconstituted forms and defensive properties of lipophilic extracts not being significantly correlated with plant physical or chemical traits to determine the feeding preference of the gastropod. Our results do not reveal a prevalence for a specific plant attribute contributing to herbivory. Instead, they indicate that the susceptibility of aquatic plants to generalist consumers is probably related to a combination of their chemical and physical properties, resulting in moderate grazing rates by generalist consumers.

8.
Am J Bot ; 108(11): 2174-2182, 2021 11.
Article in English | MEDLINE | ID: mdl-34618356

ABSTRACT

PREMISE: The optimal defense theory (ODT) predicts that the allocation of chemical defenses in plants will be concentrated in parts or tissues that are of higher fitness value for the individuals that produce them. Chemicals are known to be allocated to certain parts of aquatic plants, and the morphological architecture of Nymphoides humboldtiana, a species that exposes its parts to different environmental factors and consumers, may be an excellent model to evaluate within-plant susceptibility to consumers according to the ODT. METHODS: Under laboratory experimental conditions, we evaluated the defensive properties of extracts from vegetative (leaves, rhizomes, roots) and reproductive (long stem internodes, flowers, fruits) parts of N. humboldtiana against consumption by the generalist herbivorous gastropod Biomphalaria glabrata. Extracts were also subjected to chemical analysis by high-performance liquid chromatography, principal component analysis, and analysis of their relationships to defensive actions. RESULTS: Extracts of all vegetative and internode (reproductive) parts of N. humboldtiana exhibited defensive properties against B. glabrata, but the long stem internodes exhibited the highest percentage of inhibition. Chemical profiles of these parts were qualitatively and quantitatively different, but a major unidentified compound is presumably responsible for the higher defensive property found in internodes. CONCLUSIONS: Our results support the ODT, since chemical defense was more effective in long stem internodes, which have a high fitness value for N. humboldtiana to keep the flowers emerged on the water surface in response to the rapid and dynamic changes in water levels typical of freshwater environments.


Subject(s)
Herbivory , Magnoliopsida , Flowers , Plant Leaves , Plant Roots
9.
An Acad Bras Cienc ; 93(4): e20200686, 2021.
Article in English | MEDLINE | ID: mdl-34705938

ABSTRACT

The extensive marine biodiversity has proved to be a promising source of substances with biomedical potential. In this study, the cytotoxicity of the Brazilian octocoral Phyllogorgia dilatata (Gorgoniidae) was evaluated against two tumor cell lines and three bacterial strains. The methanol/dichloromethane crude extract presented no antibacterial activity up to the highest concentration tested (512 µg/mL), however it revealed a noteworthy antiproliferative effect against HCT-116 (80%) and MCF-7 (54%) cell lines at 50 µg/mL. Therefore, guided by the cytotoxic activity, a multistep chemical fractionation of the extract provided the subfraction 5 (PDPH2-5) with IC50 values of 3.18 and 17.80 µg/mL against HCT-116 and MCF-7, respectively. The LC-HRMS/MS analysis of PDPH2-5 showed ions of m/z 219.1742 and 219.1743, characterized as (E,E) and (Z,E) germacrone, after a LC-DAD-SPE/NMR analysis of the hexanic fraction and comparisons of NMR data with the literature. Previously reported assessments to the cytotoxic activity of the (E,E)-diastereoisomer disclosed higher IC50 values than that obtained for the PDPH2-5 fraction, suggesting, herein, a potentiated effect of the diastereoisomeric mixture. Such remark encourage further bioactivity studies with stereoisomer mixtures and reduce the urge for compound isolation.


Subject(s)
Anthozoa , Antineoplastic Agents , Biological Products/pharmacology , Animals , Anthozoa/chemistry , Antineoplastic Agents/pharmacology , HCT116 Cells , Humans , MCF-7 Cells
10.
Metabolomics ; 17(9): 79, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34463832

ABSTRACT

INTRODUCTION: Metabolomic approaches can assess the actual state of an organism's energy metabolism during a specific morphological event, providing a more accurate insight into the correlations between physiology and metabolic regulation. METHODS: The study of the metabolomic profile aim to identify the largest possible number of biomolecules in a certain organism or specific structures. For this purpose, mass spectrometry (MS) and chromatography have been used in the present study. OBJECTIVES: In this context, the aim of the present work is to evaluate the glucose metabolomic profile during embryogenesis in Rhipicephalus microplus tick, investigating the dynamics of nutrient utilization during tick embryo formation, as well as the control of glucose metabolism. RESULTS: We show that glycogen reserves are preferentially mobilized to sustain the energy-intensive process of embryogenesis. Subsequently, the increase in concentration of specific amino acids indicates that protein degradation would provide carbons to fuel gluconeogenesis, supplying the embryo with sufficient glucose and glycogen during development. CONCLUSION: Altogether, these results demonstrated the presence of a very refined catabolic and anabolic control during embryogenesis in R. microplus tick, suggesting the pronounced gluconeogenesis as a strategy to secure embryo development. Moreover, this research contributes to the understanding of the mechanisms that control glucose metabolism during tick embryogenesis and may aid the identification of putative targets for novel chemical or immunological control methods, which are essential to improve the prevention of tick infestations.


Subject(s)
Rhipicephalus , Tick Infestations , Animals , Embryonic Development , Glucose , Glycogen
11.
Anal Bioanal Chem ; 413(16): 4301-4310, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33963881

ABSTRACT

Marine sponges from the Plakinidae family are well known for hosting cytotoxic secondary metabolites and the Brazilian Atlantic coast and its oceanic islands have been considered as a hotspot for the discovery of new Plakinidae species. Herein, we report the chemical profile among cytotoxic extracts obtained from four species of Plakinidae, collected in Fernando de Noronha Archipelago (PE, Northeastern Brazil). Crude organic extracts of Plakinastrella microspiculifera, Plakortis angulospiculatus, Plakortis insularis, and Plakortis petrupaulensis showed strong antiproliferative effects against two different cancer cell lines (HCT-116: 86.7-100%; MCF-7: 74.9-89.5%) at 50 µg/mL, by the MTT assay. However, at a lower concentration (5 µg/mL), high variability in inhibition of cell growth was observed (HCT-116: 17.3-68.7%; MCF-7: 0.00-55.5%), even within two samples of Plakortis insularis which were collected in the west and east sides of the Archipelago. To discriminate the chemical profile, the samples were investigated by UHPLC-HRMS under positive ionization mode. The produced data was uploaded to the Global Natural Products Social Molecular Networking and organized based on spectral similarities for purposes of comparison and annotation. Compounds such as dipeptides, nucleosides and derivatives, polyketides, and thiazine alkaloids were annotated and metabolomic differences were perceived among the species. To the best of our knowledge, this is the first assessment for cytotoxic activity and chemical profiling for Plakinastrella microspiculifera, Plakortis insularis and Plakortis petrupaulensis, revealing other biotechnologically relevant members of the Plakinidae family.


Subject(s)
Metabolome , Porifera/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Brazil , Cell Proliferation/drug effects , HCT116 Cells , Humans , Islands , MCF-7 Cells , Metabolomics , Neoplasms/drug therapy , Plakortis/chemistry , Plakortis/metabolism , Porifera/metabolism
12.
Ciênc. rural (Online) ; 51(8): e20200138, 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1249545

ABSTRACT

ABSTRACT: Marine algae are natural sources of macromolecules known as sulfated polysaccharides. This class of compounds has attracted the interest of Pharmaceutical Sciences due to its pharmacological anticoagulant, antiplatelet and antithrombotic properties. Therefore, this study evaluated the anticoagulant potential of sulfated polysaccharides extracted from the algae Penicillus capitatus. The extracted sulfated polysaccharides were purified, partially characterized and their anticoagulant activity was evaluated. The extraction process followed by ethanol precipitation resulted in five fractions. Among the analyzed fractions, F44 contained highest concentration of sulfated polysaccharides. After the purified fraction F23, F44 displayed in vitro anticoagulant activity in a time testing for activated partial thromboplastin time and prothrombin time. The preferential mechanism effect was based on interactions between thrombin and factor Xa. Additional studies on structure pharmacological are required to test the viability of the use of sulfated polysaccharides as therapeutic agents.


RESUMO: As algas marinhas são fontes naturais de macromoléculas conhecidas como polissacarídeos sulfatados. Esta classe de compostos atraiu o interesse das Ciências Farmacêuticas devido às suas propriedades farmacológicas como anticoagulante, antiplaquetária e antitrombótica. Portanto, este estudo tem como objetivo avaliar o potencial anticoagulante de polissacarídeos sulfatados extraídos de algas de Penicillus capitatus. Os polissacarídeos sulfatados extraídos foram purificados, parcialmente caracterizados e sua atividade anticoagulante foi avaliada. O processo de extração seguido pela precipitação com etanol resultou em cinco frações. Entre as frações analisadas, F44 foi a maior concentração de polissacarídeos sulfatados. Após a purificação, as frações F23 e F44 mostraram atividade anticoagulante in vitro em um teste de tempo de tromboplastina parcialmente ativada e tempo de protrombina. Seu mecanismo preferencial é baseado nas interações entre trombina e fator Xa. Estudos adicionais sobre a estrutura farmacológica são necessários para testar a viabilidade do uso como agente terapêutico.

13.
J Photochem Photobiol B ; 212: 112021, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32957070

ABSTRACT

Ultraviolet B-light (UV-B) can exert indirect effects on plant-herbivore interactions by inducing changes in constitutive and induced chemical defenses, since it modulates physiological aspects of plants. This study evaluated the action of UV-B radiation on photosynthesis and production of secondary metabolites in Nymphoides humboldtiana and the cascade effects on the relationship of this macrophyte with a generalist herbivore, the gastropod mollusk Biomphalaria glabrata. After 13 days of UV-B exposition under laboratory conditions, the floating macrophyte N. humboldtiana responded increasing its photosynthetic potential and the production of flavonoids with a correlated enhance in antioxidant activity. However, these changes observed in its metabolism were not enough to alter their palatability to consumption by B. glabrata verified through laboratory feeding choice experiments. Despite the known deleterious effects of exposure to UV-B on terrestrial plants, we found that N. humboldtiana does have physiological/biochemical mechanisms as a strategy or restorative response to this potencially adverse or impacting agent without changing its relationships with herbivores.


Subject(s)
Herbivory/radiation effects , Magnoliopsida/metabolism , Magnoliopsida/radiation effects , Organothiophosphorus Compounds/metabolism , Photosynthesis/radiation effects , Ultraviolet Rays , Animals , Chlorophyll A/metabolism , Mollusca/physiology
14.
Front Plant Sci ; 11: 347, 2020.
Article in English | MEDLINE | ID: mdl-32523586

ABSTRACT

Allelopathy and autotoxicity are well-known biological processes in angiosperms but are very little explored or even unknown in seaweeds. In this study, extract and major pure compounds from two distinct populations of the red seaweed Laurencia dendroidea were investigated to evaluate the effect of autotoxicity through auto- and crossed experiments under laboratory conditions, using chlorophyll fluorescence imaging to measure inhibition of photosynthesis (ΦPSII) as a variable response. Individuals of L. dendroidea from Azeda beach were inhibited by their own extract (IC50 = 219 µg/ml) and the major compound elatol (IC50 = 87 µg/ml); both chemicals also inhibited this seaweed species from Forno beach (IC50 = 194 µg/ml for the extract and IC50 = 277 µg/ml for elatol). By contrast, the extract of L. dendroidea from Forno and its major compound obtusol showed no inhibitory effect in individuals of both populations; but obtusol was insoluble to be tested at higher concentrations, which could be active as observed for elatol. The Azeda population displayed higher susceptibility to the Azeda extract and to elatol, manifested on the first day, unlike Forno individuals, in which the effect was only detected on the second day; and inhibition of ΦPSII was more pronounced at apical than basal portions of the thalli of L. dendroidea. This first finding of seaweed autotoxicity and allelopathic effects revealed the potential of the chemistry of secondary metabolites for intra- and inter-populational interactions, and for structuring seaweed populations.

15.
Plant Physiol Biochem ; 154: 295-303, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32590291

ABSTRACT

Inducible chemical defenses are more common in temperate seaweeds than tropical ones, and are directly detected by increase of chemical contents, or indirectly by differential consumption of live seaweed tissues or artificial food with algal extracts by herbivores. In general, seaweed-induced chemical defense occur between 11 and 20 days after both simulated/artificial or direct herbivory. Here, we used experimental procedures to assess induced chemical defense in the tropical red seaweed Laurencia dendroidea as response to direct grazing, chemical cues from grazed conspecific neighbors and only presence of herbivores. Chemical defenses were analyzed by detecting the palatability of artificial food containing L. dendroidea extracts offered to Aplysia brasiliana and by comparative analyses of extracts from this seaweed by Gas Chromatography/Mass Spectroscopy, as well as metabolomic data analysis by Principal Component Analysis. Our results revealed that direct grazing by A. brasiliana induced a rapid (after 48 h) response among individuals of L. dendroidea, as did waterborne chemical cues from grazed conspecifics, but the presence of sea hare alone did not elicit a response. Increased resistance to grazing was accompanied by significative changes in sesquiterpene metabolomic chemical profile, revealing that induced defense: may be more widespread among seaweeds, independent of latitude; can involve changes in other classes of substances besides phlorotannins or not only the increase in the content of a single compound; and may be a rapid and ecologically coherent response to consumers. In addition, the importance of incorporating the metabolomic approach when examining inducible chemical defense in seaweeds is also emphasized.


Subject(s)
Aplysia , Herbivory , Laurencia/chemistry , Seaweed/chemistry , Animals , Laurencia/physiology , Metabolome , Seaweed/physiology
16.
Phytother Res ; 32(6): 1119-1125, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29480520

ABSTRACT

Red algae of the genus Laurencia J. V. Lamouroux are found in tropical and subtropical regions throughout the world and are an extremely rich source of active secondary metabolites with diverse structural features. In the present study, 6 sesquiterpenes (obtusol, (-)-elatol, dendoidiol, debrome-elatol, triquinane, and obtusane) isolated from Laurencia dendroidea were investigated for their cytotoxicity, using 4 cancer cell lines (U937, Jurkat, B16F10, and Colo-205). Among all sesquiterpenes tested, obtusol and (-)-elatol showed a promising activity in the treatment of Colo-205 strain, with IC50 of 1.2 ± 1.4 and 2.5 ± 1.3 µg/ml, respectively. In addition, fluorescence microscopy results indicated that, at 100 µg/ml, obtusol induced apoptosis at 79% and (-)-elatol at 95%. Activation of Caspases 2, 4, 6, and 8 showed to be involved in (-)-elatol activity and only Caspase 6 in obtusol activity. These data demonstrated the effective apoptosis-inducing activity of the sesquiterpene (-)-elatol and obtusol in the treatment of Colo-205 strain. Therefore, more studies should be done so that the sesquiterpenes (-)-elatol and obtusol might become promising chemotherapy.


Subject(s)
Laurencia/chemistry , Sesquiterpenes/therapeutic use , Humans , Sesquiterpenes/pharmacology
17.
J Phycol ; 53(6): 1294-1304, 2017 12.
Article in English | MEDLINE | ID: mdl-28990189

ABSTRACT

Approximately half of the Padina (Dictyotales, Phaeophyceae) species mineralize aragonite needles over the adaxial thallus surface, where mineral bands are interspersed with nonmineralized regions along the thallus from the apical to basal end. However, this calcification pattern and the related algal properties are not well understood. Therefore, this work was performed to elucidate a potential role of cell walls in the inhibition/induction of mineralization in the brown alga Padina gymnospora. In a comparison of specific thallus regions, differences were identified in the cellulose distribution, microfibrils arrangement and thickness, distribution and abundance of phenolic substances, and physical differences among the surfaces of the thallus (deformation, adhesion, topography, and nano-rugosity). In vitro mineralization assays indicated that phenolic substances are strong modulators of calcium carbonate crystals growth. In addition, de novo mineralization assays over cell wall surfaces that were used as templates, even without cellular activity, indicated that the cell wall remains a key factor in the induction/inhibition of mineralization. Overall, the current findings indicate a strong correlation between the physico-chemical and structural properties of the cell wall and the alternation pattern of the mineralization bands over the thallus of P. gymnospora.


Subject(s)
Calcification, Physiologic , Calcium Carbonate/metabolism , Phaeophyceae/physiology , Brazil , Cell Wall/physiology , Cell Wall/ultrastructure , Phaeophyceae/ultrastructure
18.
PLoS One ; 11(11): e0165954, 2016.
Article in English | MEDLINE | ID: mdl-27832119

ABSTRACT

The red seaweed Laurencia dendroidea belongs to the Rhodophyta, a phylum of eukaryotic algae that is widely distributed across the oceans and that constitute an important source of bioactive specialized metabolites. Laurencia species have been studied since 1950 and were found to contain a plethora of specialized metabolites, mainly halogenated sesquiterpenes, diterpenes and triterpenes that possess a broad spectrum of pharmacological and ecological activities. The first committed step in the biosynthesis of triterpenes is the cyclization of 2,3-oxidosqualene, an enzymatic reaction carried out by oxidosqualene cyclases (OSCs), giving rise to a broad range of different compounds, such as the sterol precursors cycloartenol and lanosterol, or triterpene precursors such as cucurbitadienol and ß-amyrin. Here, we cloned and characterized the first OSC from a red seaweed. The OSC gene was identified through mining of a L. dendroidea transcriptome dataset and subsequently cloned and heterologously expressed in yeast for functional characterization, which indicated that the corresponding enzyme cyclizes 2,3-oxidosqualene to the sterol precursor cycloartenol. Accordingly, the gene was named L. dendroidea cycloartenol synthase (LdCAS). A phylogenetic analysis using OSCs genes from plants, fungi and algae revealed that LdCAS grouped together with OSCs from other red algae, suggesting that cycloartenol could be the common product of the OSC in red seaweeds. Furthermore, profiling of L. dendroidea revealed cholesterol as the major sterol accumulating in this species, implicating red seaweeds contain a 'hybrid' sterol synthesis pathway in which the phytosterol precursor cycloartenol is converted into the major animal sterol cholesterol.


Subject(s)
Cloning, Molecular/methods , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Laurencia/enzymology , Phytosterols/metabolism , Triterpenes/metabolism , Gene Expression , Laurencia/genetics , Laurencia/metabolism , Phylogeny , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
19.
Mar Drugs ; 14(9)2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27618071

ABSTRACT

This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 µg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 µM (9 µg/mL) and 22.9 µM (10 µg/mL), and selectivity indexes of 8.4 µM and 11.5 µM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Leishmaniasis/drug therapy , Phaeophyceae/chemistry , Animals , Diterpenes/pharmacology , Leishmaniasis/parasitology , Macrophages/drug effects , Macrophages/parasitology , Magnetic Resonance Spectroscopy , Mice , Nitric Oxide/biosynthesis , Reactive Oxygen Species/metabolism
20.
Chem Biodivers ; 13(7): 845-51, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27224289

ABSTRACT

In order to evaluate the chemical diversity of Laurencia dendroidea J. Agardh, a widely distributed seaweed in Brazilian coast, a phytochemical study was carried out with algae collected from six different locations along the Southeast Brazilian coast. Purified compounds were identified by MS and NMR techniques. The chemical profiles of lipophilic extracts were obtained by GC/MS for each population. In total, 15 compounds were described. The sesquiterpene composition accounted for 49 - 63% of the GC/MS chromatogram area. The discrimination of three chemotypes was done by the use of HCA on GC/MS chromatograms. They were also analyzed by the PCA and, together with peak area analysis, it was possible to discriminate all populations by the main variation of elatol, obtusol, rogiolol, and triquinane. The results revealed the high diversity of sesquiterpene composition among populations of L. dendroidea. Curiously, the within and among population variation of elatol and obtusol suggested a biochemical interplay on the content of these compounds. More studies are necessary to understand the patterns of chemical diversity and compound variation within and among populations of L. dendroidea.


Subject(s)
Biological Products/analysis , Biological Products/chemistry , Laurencia/metabolism , Biological Products/metabolism , Brazil , Laurencia/chemistry , Molecular Conformation , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...