Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 14: 6869-6889, 2019.
Article in English | MEDLINE | ID: mdl-31507318

ABSTRACT

INTRODUCTION: Biodegradable polymers that contain radioactive isotopes such as Holmium 166 have potential applications as beta particle emitters in tumor tissues. Also, Ho(III) is paramagnetic, which makes it suitable as a contrast agent for magnetic resonance (MR) images. METHODS: Holmium acetylacetonate (Ho(acac)3) loaded poly(3-hydroxy-butyrate-co-3-hydroxy-valerate) microspheres, with 5% or 8% of 3-hydroxy-valerate (HV), were prepared by emulsification/evaporation process within 20-53 µm size. Microspheres characterization was done using scanning electron microscopy, energy-dispersive X-ray, and infrared spectroscopies. The release of holmium(III) in sodium phosphate buffer (pH 7.4) was followed for 9 days with inductively coupled plasma. Finally, T2 and T2* magnetic resonance images (MRI) were acquired and compared with the MRI of the inclusion complex of holmium acetylacetonate in some ß-cyclodextrins. RESULTS: Holmium acetylacetonate loading, evaluated by thermogravimetry, was up to 20 times higher for copolymer with 5% of HV. It was shown that microspheres loaded with Ho(acac)3 exhibited an accumulation of Ho(III) on their surfaces but were stable over time, as no expressive release of holmium(III) was detected in 9-day exposition to sodium phosphate buffer. Holmium acetylacetonate in both microspheres or inclusion complexes was very efficient in obtaining T2 and T2* weighted images in magnetic resonance, thus, might be used as contrast agents. CONCLUSION: This is the first description of the use of inclusion complexes of holmium acetylacetonate in biodegradable polymers as contrast agents. New investigations are underway to evaluate the resistance of PHB-HV polymer microparticles to nuclear activation to assess their potential for use as radiopharmaceuticals for the treatment of liver cancer.


Subject(s)
Contrast Media/chemistry , Holmium/chemistry , Hydroxybutyrates/chemistry , Magnetic Resonance Imaging , Microspheres , Pentanones/chemistry , Polyesters/chemistry , Radioisotopes/chemistry , Calibration , Humans , Prohibitins , Spectrometry, X-Ray Emission , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...