Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 313(1): C11-C26, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28381519

ABSTRACT

Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form S-nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of S-nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without S-nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor - GSNORi - or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Gene Expression Regulation, Developmental , Muscle Development/genetics , Myoblasts/metabolism , Nitric Oxide/metabolism , Aldehyde Oxidoreductases/antagonists & inhibitors , Aldehyde Oxidoreductases/genetics , Animals , Cell Differentiation , Cell Fusion , Chick Embryo , Cyclic AMP/metabolism , Cyclic AMP/pharmacology , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Cysteine/analogs & derivatives , Cysteine/metabolism , Cysteine/pharmacology , Enzyme Inhibitors/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Muscle Development/drug effects , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/drug effects , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , S-Nitrosoglutathione/metabolism , S-Nitrosothiols/metabolism , S-Nitrosothiols/pharmacology , Signal Transduction , Soluble Guanylyl Cyclase/genetics , Soluble Guanylyl Cyclase/metabolism , Soluble Guanylyl Cyclase/pharmacology , Thionucleotides/pharmacology , Triazenes/pharmacology
2.
FEBS Lett ; 590(3): 317-29, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26786059

ABSTRACT

The multifunctional protein Lmo7 has been implicated in some aspects of myogenesis in mammals. Here we studied the distribution and expression of Lmo7 and the effects of Lmo7 knockdown in primary cultures of chick skeletal muscle cells. Lmo7 was localized within the nuclei of myoblasts and at the perinuclear region of myotubes. Knockdown of Lmo7 using siRNA specific to chick reduces the number and width of myotubes and the number of MyoD positive-myoblasts. Both Wnt3a enriched medium and Bio, activators of the Wnt/beta-catenin pathway, could rescue the effects of the Lmo7 knockdown suggesting a crosstalk between the Wnt/beta-catenin and Lmo7-mediated signaling pathways. Our data shows a role of Lmo7 during the initial events of chick skeletal myogenesis, particularly in myoblast survival.


Subject(s)
Avian Proteins/metabolism , LIM Domain Proteins/metabolism , Muscle Development , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Transcription Factors/metabolism , Animals , Avian Proteins/antagonists & inhibitors , Avian Proteins/genetics , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Cells, Cultured , Chick Embryo , Cytoplasm/metabolism , Cytoplasm/ultrastructure , France , Green Fluorescent Proteins/antagonists & inhibitors , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Infant, Newborn , LIM Domain Proteins/antagonists & inhibitors , LIM Domain Proteins/genetics , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/ultrastructure , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/ultrastructure , Protein Transport , RNA Interference , RNA, Small Interfering , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sarcolemma/metabolism , Sarcolemma/ultrastructure , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Wnt Signaling Pathway
3.
Eur J Pharmacol ; 694(1-3): 1-12, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-22921450

ABSTRACT

Skeletal myogenesis comprises myoblast replication and differentiation into striated multinucleated myotubes. Agents that interfere with myoblast replication are important tools for the understanding of myogenesis. Recently, we showed that cholesterol depletion by methyl-ß-cyclodextrin (MCD) enhances the differentiation step in chick-cultured myogenic cells, involving the activation of the Wnt/ß-catenin signaling pathway. However, the effects of cholesterol depletion on myoblast replication have not been carefully studied. Here we show that MCD treatment increases cell proliferation in primary chick myogenic cell cultures. Treatment of myogenic cells with the anti-mitotic reagent cytosine arabinoside, immediately following cholesterol depletion, blocks the MCD-induced effects on proliferation. Cholesterol depletion induced an increase in the number of desmin-positive mononucleated cells, and an increase in desmin expression. MCD induces an increase in the expression of the cell cycle regulator p53 and the master switch gene MyoD1. Treatment with BIO, a specific inhibitor of GSK3ß, induced effects similar to MCD on cell proliferation; while treatment with Dkk1, a specific inhibitor of the Wnt/ß-catenin pathway, neutralized the effects of MCD. These findings indicate that rapid changes in the cholesterol content in cell membranes of myoblasts can induce cell proliferation, possibly by the activation of the Wnt/ß-catenin signaling pathway.


Subject(s)
Cholesterol/deficiency , Desmin/metabolism , Myoblasts/cytology , Myoblasts/metabolism , beta-Cyclodextrins/pharmacology , Animals , Bromodeoxyuridine/metabolism , Cell Count , Cell Proliferation/drug effects , Cell Survival/drug effects , Chick Embryo , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Regulation/drug effects , Muscle Development/drug effects , MyoD Protein/metabolism , Myoblasts/drug effects , Organ Specificity , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...