Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Lasers Med Sci ; 39(1): 135, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787412

ABSTRACT

In this study, we assess the impact of photodynamic therapy (PDT) using aluminum phthalocyanine tetrasulfonate (AlPcS4) on the viability and cellular stress responses of MCF-7 breast cancer cells. Specifically, we investigate changes in cell viability, cytokine production, and the expression of stress-related genes. Experimental groups included control cells, those treated with AlPcS4 only, light-emitting diode (LED) only, and combined PDT. To evaluate these effects on cell viability, cytokine production, and the expression of stress-related genes, techniques such as 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT‒qPCR) were employed. Our findings reveal how PDT with AlPcS4 modulates mitochondrial activity and cytokine responses, shedding light on the cellular pathways essential for cell survival and stress adaptation. This work enhances our understanding of PDT's therapeutic potential and mechanisms in treating breast cancer.


Subject(s)
Breast Neoplasms , Cell Survival , Cytokines , Indoles , Organometallic Compounds , Photochemotherapy , Photosensitizing Agents , Humans , Photochemotherapy/methods , MCF-7 Cells , Cytokines/metabolism , Cell Survival/drug effects , Cell Survival/radiation effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Indoles/pharmacology , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Enzyme-Linked Immunosorbent Assay
2.
Biosensors (Basel) ; 13(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37754074

ABSTRACT

As one of the most popular beverages in the world, coffee is a rich source of non-enzymatic bioactive compounds with antioxidant capacity. In this study, twelve commercial coffee beverages found in local Portuguese markets were assessed to determine their total phenolic and flavonoid contents, as well as their antioxidant capacity, by conventional optical procedures, namely, ferric reducing antioxidant power and DPPH-radical scavenging assay, and non-conventional procedures such as a homemade DNA-based biosensor against two reactive radicals: HO• and H2O2. The innovative DNA-based biosensor comprised an adenine-rich oligonucleotide adsorbed onto a carbon paste electrode. This method detects the different peak intensities generated by square-wave voltammetry based on the partial damage to the adenine layer adsorbed on the electrode surface by the free radicals in the presence/absence of antioxidants. The DNA-based biosensor against H2O2 presented a higher DNA layer protection compared with HO• in the presence of the reference gallic acid. Additionally, the phenolic profiles of the twelve coffee samples were assessed by HPLC-DAD, and the main contributors to the exhibited antioxidant capacity properties were caffeine, and chlorogenic, protocatechuic, neochlorogenic and gallic acids. The DNA-based sensor used provides reliable and fast measurements of antioxidant capacity, and is also cheap and easy to construct.


Subject(s)
Antioxidants , Coffee , Hydrogen Peroxide , DNA , Gallic Acid , Adenine
3.
Sci Total Environ ; 902: 166107, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37562636

ABSTRACT

In Mediterranean drylands, extensive areas have been restored by reforestation over the past decades to improve diversity, soil fertility, and tree natural regeneration, contributing to halting desertification and land degradation. However, evaluating reforestation success usually relies on tree survival, while holistic and long-term evaluations of reforestation success based on ecosystem diversity, structure and functioning are scarce. In this work, we provide the first assessment that combines the evaluation of planted trees and indicators of ecosystem diversity, structure, and functioning in established reforestations with three native Mediterranean species along a climatic gradient. We sampled 43 20-year-old stands with umbrella pine, holm oak and cork oak in Portugal, and tested the effects of tree species composition, stand management (i.e., differences in tree density and shrub cover), and edaphoclimatic conditions, on the size of planted trees, species diversity, structural complexity and indicators of ecosystem functioning related to productivity, soil nutrients and tree natural regeneration. Our results show that, after 20 years of reforestation, stand management was an essential driver of plant diversity and ecosystem functioning. Higher tree density, particularly of oaks, and higher shrub cover improved plant diversity, ecosystem productivity, and oak regeneration. The latter was also improved by structural complexity. Tree composition effects highlighted the importance of pine management to avoid competition. Since we evaluated these reforestations along a climatic gradient, we also conclude that climate influenced pine and holm oak size, ecosystem productivity, and soil C/N. Our research, by being based on assessing the long-term reforestation success in a more holistic way, highlighted the importance of stand management for improving ecosystem diversity and functioning in these restored systems. Practices such as increasing tree density up to ~800 trees/ha and allowing a shrub cover of ca. 30 %, may improve the ecological condition of future and currently reforested areas across the Mediterranean region.


Subject(s)
Pinus , Quercus , Trees , Ecosystem , Forests , Soil/chemistry , Plants
4.
Foods ; 12(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37297497

ABSTRACT

This study employs a multidisciplinary approach to evaluate consumers' perceptions and acceptance of Moringa oleifera Lam. beverages, examining sensory attributes, chemical composition, and bioactivities. High-performance liquid chromatography with diode array detection (HPLC-DAD) analyses revealed significant chemovariation in phenolic compositions among commercial moringa beverages. A soluble moringa powder drink exhibited the greatest concentrations of phenolic and flavonoid compounds, along with powerful antioxidant capacity powers assessed with ABTS•+, DPPH•, FRAP assays, •NO, and H2O2 scavenging activities. However, this sample was the least preferred and presented high Cd levels, exceeding WHO-acceptable values of 0.3 mg/kg. Sensory testing indicated that sweet and floral flavors contributed to beverages being liked, while green, grass, herbal flavors, sour, bitter, and precipitate presence were considered unfavorable sensory attributes. Health claims positively influenced acceptance, particularly among women. Consumers associated feelings of health, wellness, relaxation, and leisure with moringa beverages. During purchase, the most observed information included the ingredient list, health benefits, and type/flavor. These findings emphasize the importance of consumer awareness in reading labels, verifying product origins, and ensuring the absence of contaminants. By understanding consumer preferences and the impact of health claims, producers can better tailor M. oleifera beverages to meet consumer expectations while maintaining safety and quality standards.

5.
Foods ; 11(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36553841

ABSTRACT

The purpose of the conference session summarized in this article was to bring together international experts on food toxicology and food safety and share the current scientific knowledge on these topics. The presentations covered a wide range of interdisciplinary issues, including (i) the impact of diet on body weight and health outcomes including results from animal models of carcinogenesis, (ii) methods for microbial oil extraction, (iii) food processing and its impact on food safety and health, (iv) novel compounds to avoid mycotoxin contamination of agricultural products, and (v) the safety of cannabidiol in food supplements based on Cannabis sativa extracts. Some of the conclusions of the presentations included that correct food choices may impact on the risk of non-communicable diseases such as cancer, that food processing may have an influence on health, by either reducing or increasing risks, and that research regarding novel compounds is important, which may have preventive but also detrimental effects on health.

6.
Mar Drugs ; 20(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36355000

ABSTRACT

Marine macroalgae are rich in bioactive compounds that can be applied in several fields, mainly food, cosmetics, and medicine. The health-promoting effects of bioactive compounds, such as polyphenols, polysaccharides, carotenoids, proteins, and fatty acids, have been increasingly explored, especially regarding their antioxidant activity and improvement in human health. To extract these valuable compounds, advanced technologies that include Supercritical-Fluid Extraction (SFE), Pressurised-Liquid Extraction (PLE), Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE), Enzyme-Assisted Extraction (EAE), Ultrasound-Microwave-Assisted Extraction (UMAE) and Liquefied Gas Extraction (LGE) have been assessed due to their notable advantages over the conventional methods (Solid-Liquid and Soxhlet extraction). These advanced techniques are considerably influenced by different extraction parameters such as temperature, pressure, type of solvent, extraction time, solvent:solid material ratio, power (MAE, UAE, and UMAE), enzymes used (EAE), and factors related to the macroalgae matrix itself. Optimizing these process parameters for each method is critical to obtain better efficiency results for the targeted bioactive compounds. Macroalgae are natural sources with undeniable beneficial effects on human health. In this context, optimising the extraction techniques discussed in this review should prioritise exploiting these valuable resources' wide range of bioactive properties.


Subject(s)
Seaweed , Humans , Polyphenols/pharmacology , Microwaves , Antioxidants/pharmacology , Solvents
7.
Photodiagnosis Photodyn Ther ; 39: 102997, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35781094

ABSTRACT

BACKGROUND: Epidermal Growth Factor Receptor (EGFR receptor) is encoded by the EGFR gene. EGFR receptor signaling pathways are activated by EGF protein, regulating cell actions. Overexpression of EGFR receptor may be linked to malignancies with a poor prognosis. As a result, EGFR receptor is being studied for a variety of tumor diagnostics, spurring the development of innovative approaches to increase quality and efficiency. Nanomaterials can recognize cancer cells by specifically targeting of molecular pathways, underscoring the importance of nanomedicine. In this study, we synthesized EGFR-specific nanomarkers by functionalizing EGF protein and Chlorin e6 in gold nanoparticles. These nanoparticles use active targeting to deliver EGF protein to EGFR receptor, and Chlorin e6 serves as a fluorescent marker molecule METHODS: Nanomarkers were examined in vitro in MDA-MB-468 and M059J cell lines. Confocal microscopy and flow cytometry were used to examine the distribution, uptake, internalization, and fluorescence intensity of nanomarkers in vitro RESULTS: The results show that both lines examined accumulate nanomarkers. However, MDA-MB-468 had the highest intensity due to its EGFR receptor overexpression properties CONCLUSION: The findings point to ideal properties for detecting EGFR receptor overexpressed cells.


Subject(s)
Breast Neoplasms , Glioblastoma , Metal Nanoparticles , Photochemotherapy , Triple Negative Breast Neoplasms , Cell Line, Tumor , Epidermal Growth Factor/metabolism , ErbB Receptors , Female , Glioblastoma/metabolism , Gold , Humans , Photochemotherapy/methods
8.
Mar Drugs ; 20(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35736165

ABSTRACT

Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer's disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Seaweed , Alzheimer Disease/drug therapy , Biological Availability , Digestion , Humans , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
9.
Foods ; 11(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35267379

ABSTRACT

Neuroprotection is a need that remains unmet in treating chronic neurodegenerative disorders, despite decades of extensive research. To find new neuroprotective compounds, extracts of Himanthalia elongata (L.) S.F.Gray and of Eisenia bicyclis (Kjellman) Setchell were obtained through subcritical water extraction applying a four-step temperature gradient. The fractions obtained were screened against brain enzymes involved in neurodegenerative etiology, namely in Alzheimer's and Parkinson's diseases, and against reactive oxygen and nitrogen species, all contributing factors to the progression of neurodegeneration. Results showed no significant enzyme inhibition but strong radical scavenging activities, particularly in the fourth fraction, extracted at the highest temperature (250 °C), highlighting their ability to retard oxidative and nitrosative stresses. At higher temperatures, fractions were composed of phenolic compounds and Maillard reaction products, a combination that contributed to their antioxidant activity and, consequently, their neuroprotective properties. All fractions were evaluated for the presence of iodine, 14 organochlorine and 7 organophosphorus pesticides, and pharmaceuticals used in Alzheimer's and Parkinson's diseases (14), psychiatric drugs (8), and metabolites (8). The fractions studied did not present any of the screened contaminants, and only fraction 1 of E. bicyclis should be used with caution due to iodine content.

10.
Trop Doct ; 52(2): 270-275, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35037806

ABSTRACT

Ours is a cross-sectional, descriptive, retrospective study evaluating the extent of off-label prescribing for patients attending a university paediatric outpatient department in Goiás, Brazil. 391 patients were treated in the outpatient, and 668 medicines were prescribed. Of these, 70.4% followed the terms of the marketing authorization; 0.3% were unlicenced, and 11% were off-label. Dose was the main factor in off-label prescribing. Infants (0-2 years) received 37.8% of the off-label prescriptions. Vitamins and drugs for the treatment of respiratory diseases were the most prevalent culprits. Of the total prescriptions, 23 different drugs were defined as off-label. Salbutamol was the most prescribed (41.9%). Owing to practical and legal difficulties in carrying out clinical trials, medicines are inadequately studied in children; cooperation between industry, regulatory authorities, and healthcare professionals is required to improve treatment safety. Our results may help guide clinical researcher on off-label prescripting in future trials.


Subject(s)
Off-Label Use , Outpatients , Brazil , Child , Cross-Sectional Studies , Delivery of Health Care , Humans , Infant , Retrospective Studies , Universities
11.
Microbiol Spectr ; 10(1): e0216821, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019768

ABSTRACT

Staphylococcus epidermidis is a major nosocomial pathogen with a remarkable ability to persist on indwelling medical devices through biofilm formation. Nevertheless, it remains intriguing how this process is efficiently achieved under the host's harsh conditions, where the availability of nutrients, such as essential metals, is scarce. Following our previous identification of two iron-regulated loci putatively involved in iron transport, hts and fhuC, we assessed here their individual contribution to both bacterial physiology and interaction with host immune cells. Single deletions of the hts and fhuC loci led to marked changes in the cell iron content, which were partly detrimental for planktonic growth and strongly affected biofilm formation under iron-restricted conditions. Deletion of each of these two loci did not lead to major changes in S. epidermidis survival within human macrophages or in an ex vivo human blood model of bloodstream infection. However, the lack of either hts or fhuC loci significantly impaired bacterial survival in vivo in a murine model of bacteremia. Collectively, this study establishes, for the first time, the pivotal role of the iron-regulated loci hts and fhuC in S. epidermidis biofilm formation and survival within the host, providing relevant information for the development of new targeted therapeutics against this pathogen. IMPORTANCE Staphylococcus epidermidis is one of the most important nosocomial pathogens and a major cause of central line-associated bloodstream infections. Once in the bloodstream, this bacterium must surpass severe iron restriction in order to survive and establish infection. Surprisingly, very little is known about the iron acquisition mechanisms in this species. This study represents the first report on the involvement of the S. epidermidis iron-regulated loci hts and fhuC in biofilm formation under host relevant conditions and, most importantly, in survival within the host. Ultimately, these findings highlight iron acquisition and these loci in particular, as potential targets for future therapeutic strategies against biofilm-associated S. epidermidis infections.


Subject(s)
Bacteremia/microbiology , Bacterial Proteins/metabolism , Biofilms , Cation Transport Proteins/metabolism , Iron/metabolism , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/physiology , Animals , Bacterial Proteins/genetics , Cation Transport Proteins/genetics , Humans , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Multigene Family , RAW 264.7 Cells , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/growth & development
12.
Photodiagnosis Photodyn Ther ; 37: 102669, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34863947

ABSTRACT

Photodynamic Therapy (PDT) is an oncologic treatment, producing reactive oxygen species (ROS) to induce the death of cancer cells. This study aimed to evaluate the action of PDT on gliosarcoma cells, using protoporphyrin IX as PS by incubation with the precursor aminolevulinic acid (ALA). An LED device was used with a light dose of 10 J/cm². The success of the therapy proved to be dependent on the concentration of ALA, and an incubation time of 4 h required for an effective response. Cell death was prevalent due to necrosis when assessed 18 h post-PDT. ALA proved to be an option to PDT in cells of the 9 L/lacZ, with the protocol tested.


Subject(s)
Gliosarcoma , Photochemotherapy , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Cell Line, Tumor , Gliosarcoma/drug therapy , Humans , Lac Operon , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Protoporphyrins/pharmacology
13.
Pharmaceutics ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36678728

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs) have some limitations in the physiological environment, however, a modification on their surface, such as a core-shell structure with gold (SPIONs@Au), can enhance their applicability. In this study, SPIONs were synthesized by the chemical coprecipitation method, stabilized by sodium citrate, and followed by the gold-coating process. SPIONs@Au were functionalized with EGF-α-lipoic acid and chlorin e6 (Ce6)-cysteamine complexes, composing a Theranostic Nanoprobe (TP). The outcomes showed that the SPIONs@Au had changed in color to red and had an absorption band centered at 530 nm. The coating was verified in the TEM micrographs in bright and dark fields by EDS mapping, which indicated the presence of Au and Fe. The Ce6-cysteamine complex had a resonant band at 670 nm that enabled the diagnosis of biological samples using fluorescence analysis. In the measure of TNBC cell uptake, the maximum value of TP fluorescence intensity was obtained within 4 h of internalization. At 2 h, the incorporation of the TP in the cytoplasm as well as in the nuclei was observed, suggesting that it could be employed as a diagnostic marker. The PTT results showed significant percentages of apoptosis in the TNBC cell line, which confirms the efficacy of the TP.

14.
Foods ; 10(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34945651

ABSTRACT

Seaweeds represent a rich source of biologically active compounds with several applications, especially in the food, cosmetics, and medical fields. The beneficial effects of marine compounds on health have been increasingly explored, making them an excellent choice for the design of functional foods. When studying marine compounds, several aspects must be considered: extraction, identification and quantification methods, purification steps, and processes to increase their stability. Advanced green techniques have been used to extract these valuable compounds, and chromatographic methods have been developed to identify and quantify them. However, apart from the beneficial effects of seaweeds for human health, these natural sources of bioactive compounds can also accumulate undesirable toxic elements with potential health risks. Applying purification techniques of extracts from seaweeds may mitigate the amount of excessive toxic components, ensuring healthy and safer products for commercialization. Furthermore, limitations such as stability and bioavailability problems, chemical degradation reactions during storage, and sensitivity to oxidation and photo-oxidation, need to be overcome using, for example, nanoencapsulation techniques. Here we summarize recent advances in all steps of marine products identification and purification and highlight selected human applications, including food and feed applications, cosmetic, human health, and fertilizers, among others.

15.
Food Chem Toxicol ; 155: 112385, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34237393

ABSTRACT

Considering the importance of seaweeds for the development of sustainable and innovative food products, this study aimed to characterize the impact of hydrothermal processing on iodine, sodium, potassium, selenium, and arsenic concentrations of four seaweed species (S. latissima, L. digitata, U. pinnatifida, and C. crispus) and on the associated health risks-benefits for consumers. These elements revealed a common pattern for leachable fractions of iodine, total arsenic, and selenium: L. digitata ≥ S. latissima > C. crispus > U. pinnatifida after rehydration and boiling during different periods. The behavior for sodium was: S. latissima > L. digitata > C. crispus > U. pinnatifida, and for potassium: U. pinnatifida > L. digitata > S. latissima > C. crispus. Generally, the species that attained more significant losses were S. latissima and L. digitata. A health-relevant sodium/potassium ratio below 0.7 was found for all species except for U. pinnatifida. In some species, the risk-benefit analysis revealed that high iodine and arsenic levels might promote risks for consumption, even after 20 min boiling, but 5 g of processed U. pinnatifida could contribute to adequate iodine, sodium, potassium, and selenium intakes for all population groups. Standardized processing treatments of seaweeds can open new opportunities for the sector.


Subject(s)
Arsenic/analysis , Food Handling , Iodine/analysis , Metals, Light/analysis , Seaweed/chemistry , Selenium/analysis , Chondrus/chemistry , Food Handling/methods , Laminaria/chemistry , Potassium/analysis , Risk Assessment , Sodium/analysis , Undaria/chemistry , Water/analysis
16.
Foods ; 10(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204677

ABSTRACT

The total lipid content and lipidic profile of seaweeds harvested in the North Coast and purchased in Portugal were determined in this paper. The amount of total lipids in the different species of seaweeds varied between 0.7 ± 0.1% (Chondrus crispus) and 3.8 ± 0.6% (Ulva spp.). Regarding the fatty acid content, polyunsaturated fatty acids (PUFA) ranged between 0-35%, with Ulva spp. presenting the highest amount; monounsaturated fatty acids (MUFA) varied between 19 and 67%; and saturated fatty acids (SFA) were predominant in C. crispus (45-78%) and Gracilaria spp. (36-79%). Concerning the nutritional indices, the atherogenicity index (AI) was between 0.4-3.2, the thrombogenicity index (TI) ranged from 0.04 to 1.95, except for Gracilaria spp., which had a TI of 7.6, and the hypocholesterolemic/hypercholesterolemic ratio (HH) values ranged between 0.88-4.21, except for Gracilaria spp., which exhibited values between 0.22-9.26. The n6/n3 ratio was below 1 for most of the species evaluated, except for Ascophyllum nodosum, which presented a higher value, although below 2. Considering the PUFA/SFA ratio, seaweeds presented values between 0.11-1.02. The polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons (AHCs) contamination of seaweeds under study was also quantified, the values found being much lower than the maximum levels recommended for foodstuff.

17.
Antibiotics (Basel) ; 10(4)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921477

ABSTRACT

Monitoring veterinary antimicrobial use is part of the global strategy to tackle antimicrobial resistance. The purpose of this study was to quantify veterinary antimicrobials imported into Timor-Leste between 2016 and 2019 and describe the antimicrobial import profile of importers. Data were obtained from import applications received by the Ministry of Agriculture and Fisheries (MAF) of Timor-Leste. Import quantities were analysed by antimicrobial class, importance for human medicine, recommended route of administration and type of importer. An average of 57.4 kg (s.d. 31.0 kg) and 0.55 mg/kg (s.d. 0.27 mg/kg) animal biomass of antimicrobials was imported per year. Tetracyclines (35.5%), penicillins (23.7%), and macrolides (15.9%) were the commonly imported antimicrobial classes. Antimicrobials imported for parenteral administration were most common (60.1%). MAF was the largest importer (52.4%). Most of the critically important antimicrobials for human medicine were imported by poultry farms for oral administration and use for growth promotion could not be ruled out. In conclusion, the use of antimicrobials in animals in Timor-Leste is very low, in keeping with its predominantly subsistence agriculture system. Farmer education, development of treatment guidelines, and strengthening of the veterinary service is important for addressing the potential future misuse of antimicrobials especially in the commercial poultry industry.

18.
Food Chem ; 355: 129563, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33799249

ABSTRACT

Paullinia cupana Kunth., commonly named Guaraná, is a plant from Brazil used as stimulant. The aim of this study was to evaluate the potential of extracts and tannins-rich and methylxanthines-free fraction from guaraná in the anti-inflammatory and antioxidant effect in vitro. Extract 1 obtained good yields of tannins and methylxanthines and was used to identify a type-A procyanidin trimer by LC-ESI-MS. Fraction 4 was rich in tannins and absent of methylxanthines. The extracts and fraction exhibited strong capacity for scavenging DPPH radical with IC50 between 5.88 and 42.75-µg/mL and inhibited TNF-α release by LPS-activated THP-1 cells when compared with control cells and did not present toxicity to THP-1 cells. The fraction 4, rich in tannins, was highly active, with IC50 5.88 µg/mL by DPPH method and inhibited TNF-α release in 83.50% at 90 µg/mL. These results reinforced potential anti-inflammatory of guaraná and data for new therapeutic approaches.


Subject(s)
Antioxidants/chemistry , Paullinia/chemistry , Plant Extracts/chemistry , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Brazil , Caffeine/chemistry , Cell Line , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Humans , Lipopolysaccharides/pharmacology , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Paullinia/metabolism , Plant Extracts/analysis , Plant Extracts/pharmacology , Seeds/chemistry , Seeds/metabolism , Spectrometry, Mass, Electrospray Ionization , Theobromine/chemistry , Theophylline/chemistry , Tumor Necrosis Factor-alpha/metabolism
19.
Front Med (Lausanne) ; 8: 799227, 2021.
Article in English | MEDLINE | ID: mdl-35004774

ABSTRACT

Iron acquisition through siderophores, a class of small, potent iron-chelating organic molecules, is a widely spread strategy among pathogens to survive in the iron-restricted environment found in the host. Although these molecules have been implicated in the pathogenesis of several species, there is currently no comprehensive study addressing siderophore production in Staphylococcus epidermidis. Staphylococcus epidermidis is an innocuous skin commensal bacterium. The species, though, has emerged as a leading cause of implant-associated infections, significantly supported by an inherent ability to form biofilms. The process of adaptation from skin niche environments to the hostile conditions during invasion is yet not fully understood. Herein, we addressed the possible role of siderophore production in S. epidermidis virulence. We first identified and deleted a siderophore homolog locus, sfaABCD, and provided evidence for its involvement in iron acquisition. Our findings further suggested the involvement of siderophores in the protection against oxidative stress-induced damage and demonstrated the in vivo relevance of a siderophore-mediated iron acquisition during S. epidermidis infections. Conclusively, this study addressed, for the first time in this species, the underlying mechanisms of siderophore production, highlighting the importance of a siderophore-mediated iron acquisition under host relevant conditions and, most importantly, its contribution to survival within the host.

20.
Front Physiol ; 12: 812884, 2021.
Article in English | MEDLINE | ID: mdl-35095569

ABSTRACT

Efforts have been made to find natural, highly nutritious alternatives to replace fish meal (FM) and fish oil (FO), which can simultaneously promote fish health and improve the nutritional quality of filets for human consumption. This study evaluated the impact of biofortified diets containing microalgae (as replacement for FM and FO), macroalgae (as natural source of iodine) and selenised yeast (organic source of selenium) on gilthead seabream growth, nutrient utilization, tissue composition and gene expression. A control diet (CTRL) with 15% FM and 5.5% FO was compared with three experimental diets (AD1, AD2, and AD3), where a microalgae blend (Chlorella sp., Tetraselmis sp., and DHA-rich Schizochytrium sp.) replaced 33% of FM. Diet AD1 contained 20% less FO. Diets were supplemented with Laminaria digitata (0.4% AD1 and AD2; 0.8% AD3) and selenised yeast (0.02% AD1 and AD2; 0.04% AD3). After feeding the experimental diets for 12 weeks, growth was similar in fish fed AD1, AD2, and CTRL, indicating that microalgae meal can partially replace both FM and FO in diets for seabream. But AD3 suppressed fish growth, suggesting that L. digitata and selenised yeast supplementation should be kept under 0.8 and 0.04%, respectively. Despite lower lipid intake and decreased PUFAs bioavailability in fish fed AD3, compared to CTRL, hepatic elovl5 was upregulated resulting in a significant increase of muscle EPA + DHA. Indeed, filets of fish fed AD2 and AD3 provided the highest EPA + DHA contents (0.7 g 100 g-1), that are well above the minimum recommended values for human consumption. Fish consuming the AD diets had a higher retention and gain of selenium, while iodine gain remained similar among diets. Upregulation of selenoproteins (gpx1, selk, and dio2) was observed in liver of fish fed AD1, but diets had limited impact on fish antioxidant status. Overall, results indicate that the tested microalgae are good sources of protein and lipids, with their LC-PUFAs being effectively accumulated in seabream muscle. Selenised yeast is a good fortification vehicle to increase selenium levels in fish, but efforts should be placed to find new strategies to fortify fish in iodine.

SELECTION OF CITATIONS
SEARCH DETAIL
...