Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Planta Med ; 80(8-9): 630-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24871207

ABSTRACT

Azadirachta indica (Meliaceae) extracts have been reported to exhibit anti-inflammatory and antinociceptive properties. However, the activities of azadirachtin, a limonoid and the major bioactive compound found in the extracts, have been poorly investigated in animal models. In the present study, we investigated the effects induced by azadirachtin in experimental models of pain and inflammation in mice. Carrageenan-induced paw edema and fibrovascular tissue growth induced by subcutaneous cotton pellet implantation were used to investigate the anti-inflammatory activity of azadirachtin in mice. Zymosan-induced writhing and hot plate tests were employed to evaluate the antinociceptive activity. To explore putative mechanisms of action, the level of tumor necrosis factor-α in inflammatory tissue was measured and the effect induced by opioidergic and serotonergic antagonists was evaluated. Previous per os (p. o.) administration of azadirachtin (120 mg/kg) significantly reduced the acute paw edema induced by carrageenan. However, the concomitant increase of the paw concentration of tumor necrosis factor-α induced by this inflammatory stimulus was not reduced by azadirachtin. In addition to inhibiting the acute paw edema induced by carrageenan, azadirachtin (6, 60, and 120 mg/kg) inhibited the proliferative phase of the inflammatory response, as demonstrated by the reduced formation of fibrovascular tissue growth. Azadirachtin (120 mg/kg) also inhibited the nociceptive response in models of nociceptive (hot plate) and inflammatory (writhing induced by zymosan) pain. The activity of azadirachtin (120 mg/kg) in the model of nociceptive pain was attenuated by a nonselective opioid antagonist, naltrexone (10 mg/kg, i. p.), but not by a nonselective serotonergic antagonist, cyproheptadine. In conclusion, this study demonstrates the activity of azadirachtin in experimental models of nociceptive and inflammatory pain, and also in models of acute and chronic inflammation. Finally, multiple mechanisms, including the inhibition of the production of inflammatory mediators and activation of endogenous opioid pathways, may mediate azadirachtin activities in experimental models of inflammation and pain.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Azadirachta/chemistry , Edema/drug therapy , Limonins/pharmacology , Plant Extracts/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Carrageenan/adverse effects , Disease Models, Animal , Edema/chemically induced , Female , Inflammation/drug therapy , Limonins/chemistry , Limonins/isolation & purification , Mice , Nociception/drug effects , Pain/drug therapy , Plant Extracts/chemistry , Plant Extracts/isolation & purification
2.
Pharmacol Biochem Behav ; 122: 291-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24780502

ABSTRACT

The reintroduction of thalidomide in the pharmacotherapy greatly stimulated the interest in the synthesis and pharmacological evaluation of phthalimide analogs with new and improved activities and also greater safety. In the present study, we evaluated the activities of two phthalimide analogs devoid of the glutarimide ring, namely 2-phthalimidethanol (PTD-OH) and 2-phthalimidethyl nitrate (PTD-NO), in experimental models of inflammatory pain and edema in male C57BL/6J mice. Intraplantar (i.pl.) injection of carrageenan (300 µg) induced mechanical allodynia and this response was inhibited by previous per os (p.o.) administration of PTD-OH and PTD-NO (750 mg/kg) and also by thalidomide (500 or 750 mg/kg). The edema induced by carrageenan was also inhibited by previous p.o. administration of PTD-OH (500 and 750 mg/kg) and PTD-NO (125, 250, 500 or 750 mg/kg), but not by thalidomide. Carrageenan increased tumor necrosis factor (TNF)-α and CXCL1 concentrations and also the number of neutrophils in the paw tissue. Previous p.o. administration of PTD-NO (500 mg/kg) reduced all the parameters, while PTD-OH (500 mg/kg) reduced only the accumulation of neutrophils. Thalidomide, on the other hand, was devoid of effect on these biochemical parameters. Plasma concentrations of nitrite were increased after p.o. administration of the phthalimide analog coupled to a NO donor, PTD-NO (500 mg/kg), but not after administration of PTD-OH or thalidomide. In conclusion, our results show that small molecules, structurally much simpler than thalidomide or many of its analogs under investigation, exhibit similar activities in experimental models of pain and inflammation. Finally, as there is evidence that the glutarimide moiety contributes to the teratogenic effect of many thalidomide analogs, our results indicate that phthalimide analogs devoid of this functional group could represent a new class of analgesic and anti-inflammatory candidates with potential greater safety.


Subject(s)
Disease Models, Animal , Edema/drug therapy , Ketoglutaric Acids/chemistry , Pain Measurement/drug effects , Pain/drug therapy , Phthalimides/therapeutic use , Animals , Carrageenan/toxicity , Edema/chemically induced , Edema/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Pain/metabolism , Pain Measurement/methods , Phthalimides/chemistry
3.
Neurosci Lett ; 553: 110-4, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23973305

ABSTRACT

The research on sex differences in nociception and antinociception as well as sex and gender differences in pain and analgesia is a maturing field. There is a vast literature showing experimental and clinical pain suppressive effects induced by minocycline, especially in inflammatory pain. However, as far as we know, possible qualitative or quantitative sex differences in those effects remained to be examined. By employing the formalin test, which has two phases of experimental pain behavior that models nociceptive pain (i.e., first phase) and inflammatory pain (i.e., second phase), we initially evaluated the effect induced by minocycline in female or male C57BL/6 mice. The treatment reduced the second phase of licking behavior in both females and males, and the effects were quantitatively similar in both sexes. Likewise, the same sex-independent effect was observed in Swiss mice, suggesting a genotype-unspecific sex-independent effect. While minocycline is already being tested in clinical trials, this appears to be the first preclinical investigation of sex differences in the experimental pain suppressive effects induced by this widely studied drug. The independence of sex in the antinociceptive effect induced by minocycline may be hopefully translated to gender-independent analgesic effects, which would be surely promising in a therapeutic paradigm.


Subject(s)
Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Minocycline/therapeutic use , Pain/drug therapy , Animals , Female , Inflammation/drug therapy , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Nociceptive Pain/drug therapy , Nociceptive Pain/physiopathology , Pain/physiopathology , Sex Factors , Species Specificity
4.
Pharmacol Biochem Behav ; 106: 85-90, 2013 May.
Article in English | MEDLINE | ID: mdl-23537730

ABSTRACT

Nicorandil (2-nicotinamide ethyl nitrate), an antianginal drug characterized by the coupling of nicotinamide with a nitric oxide (NO) donor, activates guanylyl cyclase and opens ATP-dependent K(+) channels. In the present study, we investigated the effects induced by per os (p.o.) administration of nicorandil (12.5, 25 or 50 mg/kg) or equimolar doses (corresponding to the highest dose of nicorandil) of N-(2-hydroxyethyl) nicotinamide (NHN), its main metabolite, or nicotinamide in the model of nociceptive response induced by formaldehyde in mice. Nicorandil, but not NHN or nicotinamide, inhibited the second phase of the nociceptive response. This activity was observed when nicorandil was administered between 30 and 120 min before the injection of formaldehyde. Ipsilateral intraplantar injection of nicorandil (125, 250 or 500 µg/paw) did not inhibit the nociceptive response. After p.o. administration of nicorandil (50 mg/kg), peak plasma concentrations of this compound and NHN were observed 0.63 and 4 h later, respectively. Nicotinamide concentrations were not increased after administration of nicorandil. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 or 2 mg/kg), a guanylyl cyclase inhibitor, partially attenuated the antinociceptive activity of nicorandil. However, this activity was not changed by glibenclamide (30 or 60 mg/kg), an inhibitor of ATP-dependent K(+) channels. In conclusion, we demonstrated the antinociceptive activity of nicorandil in a model of pain that exhibits both a nociceptive and an inflammatory profile. This activity is not mediated by nicotinamide or NHN. The coupling of an NO-donor to nicotinamide results in a compound with an increased potency. The NO-cGMP pathway, but not ATP-dependent K(+) channels, partially mediates the antinociceptive activity of nicorandil.


Subject(s)
Analgesics/pharmacology , Disease Models, Animal , Formaldehyde/toxicity , Nicorandil/pharmacology , Pain/prevention & control , Analgesics/blood , Animals , Dose-Response Relationship, Drug , Glyburide/pharmacology , Male , Mice , Nicorandil/blood , Oxadiazoles/pharmacology , Pain/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...