Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Toxicol Environ Health A ; 87(16): 662-673, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38808737

ABSTRACT

Pseudobombax marginatum, popularly known as "embiratanha," is widely used by traditional communities as anti-inflammatory and analgesic agent. This study aimed to determine the phytochemical profile as well as cytotoxicity, acute oral toxicity, genotoxicity, and mutagenicity attributed to exposure to aqueous (AqEx) and ethanolic (EtEx) extracts of embiratanha bark. Phytochemical screening was conducted using thin-layer chromatography (TLC). Cell viability was analyzed using MTT assay with human mammary gland adenocarcinoma (MDA-MB-231) and macrophage (J774A.1) cell lines, exposed to concentrations of 12.5, 25, 50, or 100 µg/ml of either extract. For acute oral toxicity, comet assay and micronucleus (MN) tests, a single dose of 2,000 mg/kg of either extract was administered orally to Wistar rats. TLC analysis identified classes of metabolites in the extracts, including cinnamic acid derivatives, flavonoids, hydrolyzable tannins, condensed tannins, coumarins, and terpenes/steroids. In the cytotoxicity assay, the varying concentrations of extracts derived from embiratanha induced no significant alterations in the viability of MDA-MB-231 cells. The lowest concentration of EtEx significantly increased macrophage J774A.1 viability. However, the higher concentrations of AqEx markedly lowered macrophage J774A.1 viability. Animals exhibited no toxicity in the parameters analyzed in acute oral toxicity, comet assay, and MN tests. Further, EtEx promoted a significant reduction in DNA damage index and DNA damage frequency utilizing the comet assay, while the group treated with AqEx exhibited no marked differences. Thus, data demonstrated that AqEx or EtEx of embiratanha may be considered safe at a dose of 2,000 mg/kg orgally under our experimental conditions tested.


Subject(s)
Plant Extracts , Rats, Wistar , Plant Extracts/toxicity , Plant Extracts/chemistry , Animals , Humans , Rats , Cell Line, Tumor , Male , Comet Assay , Micronucleus Tests , Female , Cell Survival/drug effects , Phytochemicals/toxicity , Phytochemicals/analysis , Mice , Plant Bark/chemistry , Mutagens/toxicity , Mutagenicity Tests , Ethanol/chemistry
2.
J Toxicol Environ Health A ; 87(14): 592-603, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38712866

ABSTRACT

Punica granatum, popularly known as pomegranate, is a fruit tree with wide worldwide distribution, containing numerous phytochemicals of great medicinal value. The aim of the present study was to determine the phytochemical profile and antioxidant potential of a protein fraction (PF) derived from P. granatum sarcotesta which is rich in lectin. In addition, the acute oral toxicity, genotoxicity and antigenotoxicity of this protein fraction (PF) from P. granatum sarcotesta was measured. The phytochemical profile of PF was determined using HPLC. The in vitro antioxidant effect was assessed using the methods of total antioxidant capacity (TAC) and DPPH and ABTS+ radical scavenging. Acute oral toxicity was determined in female Swiss mice administered a single dose of 2000 mg/kg. This PF was examined for genotoxicity and antigenotoxicity at doses of 500, 1000 and 2000 mg/kg, utilizing mouse peripheral blood cells. Phytochemical characterization detected a high content of ellagic acid and antioxidant capacity similar to that of ascorbic acid (positive control). PF was not toxic (LD50 >2000 mg/kg) and did not exert a genotoxic effect in mice. PF protected the DNA of peripheral blood cells against damage induced by cyclophosphamide. In conclusion, this PF fraction exhibited significant antioxidant activity without initiating toxic or genotoxic responses in mice.


Subject(s)
Antioxidants , Plant Extracts , Pomegranate , Animals , Mice , Antioxidants/pharmacology , Female , Plant Extracts/toxicity , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pomegranate/chemistry , Lectins/toxicity , Mutagenicity Tests , DNA Damage/drug effects , Toxicity Tests, Acute
3.
Braz J Microbiol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807020

ABSTRACT

The present study aimed to evaluate the antimicrobial and modulating activity of the ethanol extract obtained from the leaves, stems, and roots of Cnidoscolus urens in multiresistant bacteria. The Minimum Inhibitory Concentration (MIC) values obtained for the extracts of leaves, stems, and roots were greater than 1024 µg/mL for all isolates. In the antimicrobial resistance modulation test, the extract of the leaves of C. urens showed a better modulating effect than that of the stems and roots for gentamicin, highlighting the reduction of MIC for Escherichia coli, Lactococcus garvieae and Staphylococcus sciuri. For erythromycin, a reduction of MIC was observed in L. garvieae, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae. The extract from the leaves of C. urens has an important modulating effect on resistance in multiresistant bacteria, especially with gentamicin and erythromycin.

4.
J Ethnopharmacol ; 330: 118188, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38608797

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The species Jatropha gossypiifolia, popularly known as "pinhão-roxo", is distributed throughout Brazil, is commonly employed for topical or oral administration in treating wounds, inflammations, and snake bites. Given the significant impact of snakebites on public health and the limitations of antivenom, coupled with the diverse molecular composition of this plant species, investigating its healing and antidermonecrotic capacities is relevant. AIM OF THE STUDY: This study aimed to develop a topical nanoemulsion incorporating the hydroethanolic extract of J. gossypiifolia leaves, to evaluate its therapeutic potential, particularly in terms of its efficacy in wound healing and inhibition of dermonecrosis induced by B. erythromelas venom (BeV). MATERIAL AND METHODS: The extract of J. gossypiifolia (JgE) leaves was obtained by maceration and remaceration. The phytochemical analysis was conducted and J. gossypiifolia nanoemulsion (JgNe) was obtained, characterized and assessed for stability. The cytotoxicity was determined in normal cells (erythrocytes and 3T3) using hemolytic assay and cell viability assay using crystal violet staining. The antioxidant activity was evaluated by the reduction of ABTS and DPPH radicals. The evaluation of wound healing was conducted in vivo following treatment with JgNe, wherein the percentage of wound closure and inflammatory mediators. The skin irritation test was assessed in vivo by applying JgNe directly to the animal's skin. In vitro, the antivenom capacity was evaluated through enzymatic inhibition assays (phospholipase A2 and hyaluronidase) of BeV. Additionally, the in vivo antidermonecrotic activity of JgNe was evaluated by measuring the reduction of the dermonecrotic halo. RESULTS: The HPLC-DAD analysis identified flavonoids, specifically vitexin, luteolin derivatives and apigenin derivatives. In addition, 95.08 ± 5.46 mg of gallic acid/g of extract and 137.92 ± 0.99 mg quercetin/g extract, was quantified. JgNe maintained stability over a 4-week period. Moreover, JgE and JgNe demonstrated no cytotoxicity in human erythrocytes and murine fibroblasts at tested concentrations (32.25-250 µg/mL). Additionally, exhibited significant antioxidant activity by reducing ABTS and DPPH radicals. The treatment with JgNe did not induce skin irritation and accelerated wound healing, with significant wound closure observed from 5th day and reduction in nitrite levels, myeloperoxidase activity, and cytokine. Both JgE and JgNe demonstrated in vitro inhibition of the phospholipase and hyaluronidase enzymes of BeV. Moreover, JgNe exhibited antidermonecrotic activity by reducing the dermonecrotic halo caused by BeV after 24 h. CONCLUSIONS: JgNe and JgE exhibited no cytotoxicity at the tested concentrations. Additionally, our findings demonstrate that JgNe has the ability to accelerate wound closure and reduce dermonecrosis caused by BeV, indicating to be promising formulation for complementary therapy to antivenom treatment.


Subject(s)
Bothrops , Crotalid Venoms , Emulsions , Necrosis , Plant Extracts , Plant Leaves , Wound Healing , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Wound Healing/drug effects , Plant Leaves/chemistry , Crotalid Venoms/toxicity , Mice , Male , Necrosis/drug therapy , Skin/drug effects , Skin/pathology , Antioxidants/pharmacology , Antioxidants/isolation & purification , Cell Survival/drug effects , 3T3 Cells , Hemolysis/drug effects , Rats, Wistar , Nanoparticles/chemistry , Venomous Snakes
5.
Inflammopharmacology ; 32(1): 595-602, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37823930

ABSTRACT

Wounds encompass physical, chemical, biological, induced damages to the skin or mucous membranes. In wound treatment, combating infections is a critical challenge due to their potential to impede recovery and inflict systemic harm on patients. Previously, the essential oil extracted from Psidium glaziovianum (PgEO) demonstrated antinociceptive and anti-inflammatory attributes, along with negligible oral toxicity. Hence, our study aimed to assess the effects of topically applying a gel formulation containing PgEO to excisional wounds in mice. Additionally, an in vitro antimicrobial assessment was conducted. The formulated gel underwent characterization and toxicological evaluation on erythrocytes, as well as a dermal irritation test. Its antimicrobial activity was tested against both gram-positive and gram-negative bacteria, as well as fungi. Subsequently, an assessment of its efficacy in excisional wound healing was conducted in mice. The findings of this investigation highlight the gel's efficacy against both gram-positive and gram-negative bacteria, as well as fungi. Moreover, this study underscores that the PgEO-gel treatment enhances skin wound healing, potentially due to its capacity to trigger antioxidant enzymes and suppress pro-inflammatory cytokines. Furthermore, the gel exhibited minimal toxicity to erythrocytes and skin irritation. These findings hold promise for prospective preclinical and clinical trials across diverse wound types. In conclusion, this study sheds light on the potential therapeutic applications of the gel formulation containing essential oil from P. glaziovianum in the context of wound healing.


Subject(s)
Oils, Volatile , Psidium , Humans , Animals , Mice , Anti-Bacterial Agents , Prospective Studies , Gram-Negative Bacteria , Gram-Positive Bacteria , Wound Healing , Oils, Volatile/pharmacology
6.
Biomed Pharmacother ; 168: 115663, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37832408

ABSTRACT

Colorectal cancer is still unmanageable despite advances in target therapy. However, extracellular vesicles (EVs) have shown potential in nanomedicine as drug delivery systems, especially for modulating the immune cells in the tumor microenvironment (TME). In this study, M1 Macrophage EVs (M1EVs) were used as nanocarriers of oxaliplatin (M1EV1) associated with retinoic acid (M1EV2) and Libidibia ferrea (M1EV3), alone or in combination (M1EV4) to evaluate their antiproliferative and immunomodulatory potential on CT-26 and MC-38 colorectal cancer cell lines and prevent metastasis in mice of allograft and peritoneal colorectal cancer models. Tumors were evaluated by qRT-PCR and immunohistochemistry. The cell death profile and epithelial-mesenchymal transition process (EMT) were analyzed in vitro in colorectal cancer cell lines. Polarization of murine macrophages (RAW264.7 cells) was also carried out. M1EV2 and M1EV3 used alone or particularly M1EV4 downregulated the tumor progression by TME immunomodulation, leading to a decrease in primary tumor size and metastasis in the peritoneum, liver, and lungs. STAT3, NF-kB, and AKT were the major genes downregulated by of M1EV systems. Tumor-associated macrophages (TAMs) shifted from an M2 phenotype (CD163) to an M1 phenotype (CD68) reducing levels of IL-10, TGF-ß and CCL22. Furthermore, malignant cells showed overexpression of FADD, APAF-1, caspase-3, and E-cadherin, and decreased expression of MDR1, survivin, vimentin, and PD-L1 after treatment with systems of M1EVs. The study shows that EVs from M1 antitumor macrophages can transport drugs and enhance their immunomodulatory and antitumor activity by modulating pathways associated with cell proliferation, migration, survival, and drug resistance.


Subject(s)
Colorectal Neoplasms , Extracellular Vesicles , Animals , Mice , Cell Line, Tumor , Colorectal Neoplasms/pathology , Extracellular Vesicles/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Tretinoin , Tumor Microenvironment
7.
Toxicol Res ; 39(2): 179-190, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37008695

ABSTRACT

The present study aimed to evaluate saline extracts from the leaves (LE) and stem (SE) of Portulaca elatior in relation to their phytochemical composition and photoprotective and antioxidant effects, as well as to evaluate the toxicity of the leaf extract. The extracts were characterized for protein concentration and phenol and flavonoid contents, as well as for thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) profiles. Total antioxidant capacity and DPPH and ABTS+ scavenging activities were determined. In the photoprotective activity assay, the sun protection factor (SPF) was calculated. The toxicity evaluation of LE included in vitro hemolytic assay and in vivo oral and dermal acute toxicity assays in Swiss mice. LE showed the highest protein, phenol, and flavonoid (8.79 mg/mL, 323.46 mg GAE/g, and 101.96 QE/g, respectively). TLC revealed the presence of flavonoids, reducing sugars, terpenes, and steroids in both extracts. In HPLC profiles, LE contained flavonoids, while SE contained flavonoids and ellagic tannins. The antioxidant activity assays showed the lowest IC50 values ​(34.15-413.3 µg/mL) for LE, which presented relevant SPF (> 6) at 50 and 100 µg/mL. LE demonstrated low hemolytic capacity, and no signs of intoxication were observed in mice treated orally or topically at 1000 mg/kg. However, at 2000 mg/kg, an increase in the mean corpuscular volume of erythrocytes and a reduction in lymphocytes were observed; animals treated topically with 2000 mg/kg displayed scratching behavior during the first hour of observation and showed edema and erythema that regressed after six days. In conclusion, LE did not present acute oral or dermal toxicity in Swiss mice at a dose of 1000 mg/kg and showed slight toxicity in animals treated with 2000 mg/kg. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-022-00160-2.

8.
Biomed Chromatogr ; 37(9): e5665, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37118901

ABSTRACT

Phytochemical analysis of Croton blanchetianus leaves was performed by. After that, a high performance liquid chromatography method was developed and validated for the determination of rutin in herbal drug and products of C. blanchetianus. The separation was achieved on a C18 column, and the mobile phase was composed of ultrapure water and methanol (acidified with trifluoroacetic acid) with a gradient of 0.8 ml/min. The method was validated following international guidelines. The chemical analysis revealed the presence of flavonoids. Among them rutin was used as the standard for validation. In the HPLC the presence of rutin was observed at 24.7 min. The method was robust, with no significant variations, and linear in the range evaluated with R2 > 0.99. Regarding the matrix effect, it was possible to prove the absence of interference of the constituents in the herbal drug. The precision was determined with a relative standard deviation of <1.34%. The recovery results were achieved between 89.29 and 101.21%. Furthermore, with partial validation, the method was proved to be suitable for the liquid extract, dry extract and effervescent granules. Therefore, this study demonstrated that the method is effective for the quality control analysis of C. blanchetianus leaves and products.


Subject(s)
Croton , Rutin , Rutin/analysis , Chromatography, High Pressure Liquid/methods , Plant Leaves/chemistry , Tandem Mass Spectrometry/methods , Plant Extracts/chemistry
9.
Molecules ; 27(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956946

ABSTRACT

Biomphalaria glabrata snails constitute the main vector of schistosomiasis in Brazil, and Bauhinia monandra Kurz, the leaves of which contain BmoLL lectin with biocidal action, is a plant widely found on continents in which the disease is endemic. This work describes the composition of B. monandra preparations and the effect on embryos and adult snails, their reproduction parameters and hemocytes. We also describe the results of a comet assay after B. glabrata exposure to sublethal concentrations of the preparations. Additionally, the effects of the preparations on S. mansoni cercariae and environmental monitoring with Artemia salina are described. In the chemical evaluation, cinnamic, flavonoid and saponin derivatives were detected in the two preparations assessed, namely the saline extract and the fraction. Both preparations were toxic to embryos in the blastula, gastrula, trochophore, veliger and hippo stages (LC50 of 0.042 and 0.0478; 0.0417 and 0.0419; 0.0897 and 0.1582; 0.3734 and 0.0974; 0.397 and 0.0970 mg/mL, respectively) and to adult snails (LC50 of 6.6 and 0.87 mg/mL, respectively), which were reproductively affected with decreased egg deposition. In blood cell analysis, characteristic cells for apoptosis, micronucleus and binucleation were detected, while for comet analysis, different degrees of nuclear damage were detected. The fraction was able to cause total mortality of the cercariae and did not present environmental toxicity. Therefore, B. monandra preparations are promising in combating schistosomiasis since they can control both the intermediate host and eliminate the infectious agent, besides being safe to the environment.


Subject(s)
Bauhinia , Biomphalaria , Schistosomiasis , Animals , Artemia , Plant Leaves , Schistosoma mansoni
10.
J Ethnopharmacol ; 296: 115504, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35760258

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Moringa oleifera Lam. leaves infusion and powder are widely used by population due the nutritional and medicinal potentials, however data regarding safety of use are still inconclusive, leading to prohibition of this plant in some countries. AIM OF THE STUDY: The present work investigated the nutritional and phytochemical composition, acute and 28-day repeated dose toxicity, and genotoxicity of M. oleifera leaves infusion and powder. MATERIALS AND METHODS: For nutritional characterization of leaf powder, it was determined: humidity; mineral residue (ash); total lipid, protein, carbohydrate, and crude fiber contents; and total caloric value. Phytochemical composition was determined by high performance liquid chromatography (HPLC). The acute toxicity assay used Swiss female albino mice and oral administration in a single dose at 2000 and 5000 mg/kg of infusion or powder. The 28-day repeated dose toxicity assay employed female and male mice, with oral administration of infusion or powder at the doses 250, 500 and 1000 mg/kg. The animals were evaluated for body weight, water and feed consumption, biochemical and hematological parameters, and histology of the liver, spleen, and kidneys. In vivo genotoxicity and mutagenicity (2000 mg/kg) were evaluated by the comet assay and the micronucleus test, respectively. RESULTS: Nutritional characterization confirmed that M. oleifera leaves are rich in proteins, carbohydrates, lipids, minerals, and fiber. HPLC indicated the presence of flavonoids and cinnamic derivatives as major polyphenols. Acute toxicity did not reveal alterations in weight gain and water and feed consumptions and no change in biochemical, hematological, and histological parameters. Behavior alterations was observed in the first 2 h after administration at 5000 mg/kg in both treatments. Infusion did not present toxicity when administered for 28 days. Conversely, the powder at 500 and 1000 mg/kg promoted liver and kidney damages observed through biochemical parameters and histopathology. Genotoxicity and mutagenicity were not detected at 2000 mg/kg. CONCLUSIONS: The present study reveals that M. oleifera leaves are an important source of polyphenols and nutrients. Indiscriminate use of both infusion and crude leaf powder above 2000 mg/kg and powder at 500 and 1000 mg/kg are not recommended. Chronic toxicological studies and establishment of preparation protocols are suggested aiming to guarantee the safety in the use of M. oleifera leaves as nutraceutical by population.


Subject(s)
Moringa oleifera , Animals , Female , Male , Mice , Moringa oleifera/chemistry , Mutagens , Phytochemicals/analysis , Plant Extracts , Plant Leaves/chemistry , Plant Leaves/toxicity , Powders , Water
11.
Acta Trop ; 228: 106312, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35033504

ABSTRACT

This study describes for the first time the effect of saline extract and Parkia pendula seed fraction on Biomphalaria glabrata adult embryos and molluscs well as the reproductive parameters (fecundity and fertility) and survival, in addition to cytotoxicity and genotoxicity through the profile of blood cells after exposure to sublethal concentrations. Furthermore, we analyzed the action of both preparations against the cercariae of Schistosoma mansoni and their environmental safety using the bioindicator Artemia salina. The saline extract and fraction showed toxic effects for embryos (CL90 of 464.25, 479.62, 731.28, 643.28, 408.43 and 250.94, 318.03, 406.12, 635.64, 1.145 mg/mL, for blastula, gastrula, trocophore, veliger and hippo stage respectively), adult snails after 24 h of exposure (CL90 of 9.50 and 10.92 mg/mL, respectively) with increased mortality after 7 days of observation and significant decrease (p <0.05; p < 0.01 and p < 0.001) in egg mass deposition. At sublethal concentrations, an increase in quantitative and morphological changes in hemocytes was observed, and in the genotoxicity/comet assay analysis, varying degrees of nuclear damage were detected. In addition, the saline extract showed changes in the motility of the cercariae, while the fraction howed toxicity from a concentration of 1.0 mg/mL. The saline extract showed toxicity to A. salina at the highest concentrations (3.0, 4.0 and 5.0 mg/mL), while the fraction did not show ecotoxicity. Thus, the saline extract and fraction was promising in combating schistosomiasis by eliminating the intermediate host and causing alterations and/or mortality to the infectious agent.


Subject(s)
Biomphalaria , Molluscacides , Schistosomiasis , Animals , DNA Damage , Molluscacides/pharmacology , Plant Extracts/toxicity , Schistosoma mansoni , Schistosomiasis/drug therapy , Seeds
12.
Nat Prod Res ; 36(10): 2559-2564, 2022 May.
Article in English | MEDLINE | ID: mdl-33749459

ABSTRACT

The chemical composition, the antioxidant and antimicrobial potential of crude extract from leaves Cinnamomum verum and their enriched fractions was studied. Phytochemical analyses were performed by TLC and HPLC, and the antioxidant capacity was verified by DPPH• and ABTS•+. The Minimal Inhibitory/Bactericidal Concentration was conducted against twenty-two bacteria to select five strains susceptible to extracts/fractions and resistant to the antibiotics tested. Interference of Ethyl Acetate Fraction (EAF) in resistance to synthetic antibiotic was assayed by modulatory and checkerboard model. The chromatographic data showed phenolic compounds in crude extract, as well the flavonoid enrichment in the EAF. The combination of EAF and synthetic antibiotics (ampicillin, azithromycin, ciprofloxacin, or gentamicin) provides a synergistic effect against multidrug resistant strains). The results are useful to obtain multi-targeting in a single therapy solution, which on antioxidants molecules plant-derivatives can act synergistically in antimicrobial combinations, a valuable aid as bacterial resistance modifying compounds.


Subject(s)
Anti-Infective Agents , Antioxidants , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Bacteria , Cinnamomum zeylanicum , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Leaves/chemistry
13.
Mini Rev Med Chem ; 22(5): 684-700, 2022.
Article in English | MEDLINE | ID: mdl-34517800

ABSTRACT

BACKGROUND: Acanthospermum hispidum DC is a medicinal plant present in America, Africa, Australia, India, Hawaii, and Brazil. In Brazil, the species is used in the treatment of gastrointestinal, respiratory disorders and has expectorant action. In the literature, there are studies on the chemical composition of the species, with reports of the presence of alkaloids, flavonoids, hydrolyzable tannins, terpenes, and steroids. In addition, several studies have reported in vitro and in vivo studies that prove the biological properties of extracts and compounds isolated from different organs of the A. hispidum plant, including hepatoprotectors, antioxidants, antimicrobials and antiparasitic. OBJECTIVE: The objective of this review is to update the knowledge about the phytochemical, pharmacological and toxicity aspects of A. hispidum, and to contribute to the recognition of the species and direct new studies. METHODS: An extensive bibliographic search was conducted in different scientific databases. RESULTS: The presence of different chemical constituents in A. hispidum has been identified, among these constituents are flavonoids, tannins, terpenes, and steroids. Additionally, antimicrobial and antiparasitic activities were mainly attributed to the species, and other activities not previously described were presented, such as anticholinesterase, antioxidant, hepatoprotective, and hypoglycemic, all based on results of in vitro and in vivo studies. Finally, no reports of toxic effects were found in the in vitro and in vivo tests. After analyzing the articles, it was evidenced that other experiments with different models using animals are essential to evaluate the possible mechanisms of action of the extracts and compounds isolated of A. hispidum. CONCLUSION: Therefore, this review may contribute to the recognition of the importance of A. hispidum and its potential as a medicinal plant and may also guide the conduct of future research regarding the constituents, biological activities, and toxicity of the species.


Subject(s)
Asteraceae , Plants, Medicinal , Animals , Antiparasitic Agents/therapeutic use , Flavonoids/pharmacology , Phytochemicals/chemistry , Phytotherapy , Plant Extracts/chemistry , Terpenes
14.
Braz. J. Pharm. Sci. (Online) ; 58: e20114, 2022. tab, graf
Article in English | LILACS | ID: biblio-1403742

ABSTRACT

Abstract Curcumin, contained at Turmeric (Curcumalonga), can exert many beneficial pleiotropic activities in the gastrointestinal tract. This study evaluated the antioxidant and anti-inflammatory activity of C. longa on 5-fluorouracil (5-FU)-induced oral mucositis (OM) in hamsters. Phytochemical analysis of crude C. longa extract (CLE) was performed to detect the presence of curcumin by TLC and HPLC. Golden Syrian hamsters were orally pre-treated with CLE (5, 50, or 100mg/kg). Cheek pouch samples were subjected to macroscopic and histopathological evaluation. ELISA was performed to quantify the inflammatory cytokines IL-1ß and TNF-α. Superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels were assessed by ultraviolet-visible spectroscopy analysis. Behavior analysis was conducted by the open field test. Curcumin content in the CLE was 0.55%m/m ± 0.0161 (2.84%). The group treated with 5mg/kg CLE showed healing evidence with macroscopic absence of ulceration (p<0.05) and microscopic aspect of re-epithelialization, discrete inflammatory infiltrate and absence of edema. Treatment with 5mg/kg CLE significantly increased GSH levels, and reduced MDA levels and SOD activity (p˂0.05), and decreased IL-1ß (p˂0.05) and TNF-α (p˂0.01) levels. A significant reduction in walking distance, ambulation, speed, and rearing was observed for motor activity. Curcumin reduced oxidative stress, inflammation, and motor activity in hamsters with 5-FU-induced OM.


Subject(s)
Animals , Male , Rats , Stomatitis/pathology , Curcumin/analysis , Curcuma/classification , Chromatography, High Pressure Liquid/methods , Phytochemicals/agonists , Fluorouracil/administration & dosage , Inflammation/complications , Antioxidants/classification
15.
Chem Biodivers ; 18(12): e2100538, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34609784

ABSTRACT

The aim of this study was to evaluate the phytochemical composition, antioxidant, and antimicrobial potential of crude extract and fractions of Punica granatum leaves. The extract was produced by turbo extraction, after which hexanic, ethyl acetate, and aqueous fractions were obtained by partitioning. The chemical analyses were performed by thin layer chromatography and high-performance liquid chromatography, and the antioxidant activities were assayed by DPPH. and ABTS.+ . Minimal inhibitory and bactericidal concentrations (MIC/MBC) were applied to twenty-two bacteria. Most strains susceptible to extract/fractions and resistant to antibiotics were selected, and ampicillin, azithromycin, ciprofloxacin, and gentamicin were associated with the ethyl acetate fraction (EAF) against multidrug-resistant strains in modulatory and checkboard models. The data from chromatographic analyses showed flavonoids and tannins in the extract, as well as the enrichment of EAF in phenols, mainly flavonoids. The flavonoids were connected to the electron transfer activity demonstrated in the DPPH. and ABTS.+ assays. Gram-positive strains are more susceptible to EAF. The subinhibitory concentrations of P. granatum enhanced the antimicrobial activity of the agents and reduced the EAF individual MIC, and the combination of EAF and antibiotics demonstrated a synergistic effect. These results present a promising approach for developing a therapy in which antioxidant extracts and fractions can be used in combination with antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Lythraceae/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Pseudomonas aeruginosa/drug effects , Sulfonic Acids/antagonists & inhibitors
16.
Nat Prod Res ; 35(17): 2937-2941, 2021 Sep.
Article in English | MEDLINE | ID: mdl-31607161

ABSTRACT

The objective of this study was to conduct phytochemical characterization and biological evaluation of Hymenaea eriogyne. Crude extracts and fractions from the bark, leaves and pods, were obtained for phytochemical screening by TLC and HPLC, and evaluation of antibacterial and antioxidant potential. Chromatographic data revealed the presence of several metabolites, notably from the flavonoid class. HPLC analysis confirmed the presence of the flavanonol astilbin (taxifolin 3-O-ramnoside) and other flavonoids derived from aglycone taxifolin. In addition, it was possible to quantify phytochemical markers in the extracts and fractions, which showed an increased content of flavonoid and catechin derivatives in the fraction. Better results of the minimum inhibitory/bactericidal concentrations were obtained with extracts and fractions from bark. In the antioxidant activity using the DPPH method, the enriched bark fraction presented an IC50 of 34.46 µg/mL. These results contribute to the continuity of studies on the chemical and biological composition of the species.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Hymenaea , Anti-Bacterial Agents/isolation & purification , Antioxidants/isolation & purification , Hymenaea/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Bark/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry
17.
Toxicon ; 187: 65-74, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32890585

ABSTRACT

Microgramma vacciniifolia is broadly used in folk medicine but safety information is unavailable. Therefore, we evaluated the toxicity of a saline extract and a lectin-rich fraction of M. vacciniifolia rhizome. The extract showed hemolytic activity on mice erythrocytes at 1000 µg/mL, whereas the fraction promoted hemolysis (8.57-26.15%) at all tested concentrations (10-1000 µg/mL). Acute toxicity test in mice indicated an LD50 of >5000 mg/kg. Hematological alterations and increased serum alkaline phosphatase level were observed in the treated animals. Transaminases and urea levels increased in the groups treated with the extract or fraction at 5000 mg/kg. Leukocyte infiltration was observed in the liver of extract-treated animals and in the liver and lungs of mice treated with the fraction. The kidneys of animals treated with the fraction at 5000 mg/kg presented hydropic degeneration. The extract and fraction did not induce oxidative stress in the liver and did not show genotoxicity, as examined by micronucleus and comet assays. In conclusion, the preparations were not lethal to mice but caused some signs of toxicity, mainly the fraction. The results indicated the need to evaluate the toxicity of M. vacciniifolia rhizome in other models and in chronic assays.


Subject(s)
Plant Extracts/toxicity , Polypodiaceae , Rhizome , Animals , Lectins , Mice , Toxicity Tests, Acute
18.
Curr HIV Res ; 18(5): 342-353, 2020.
Article in English | MEDLINE | ID: mdl-32614748

ABSTRACT

BACKGROUND: Efavirenz is the most used medication in the treatment of Acquired Immunodeficiency Syndrome (AIDS). The limited number of pediatric antiretroviral formulations approved by regulatory agencies is the most significant obstacle to adequate and efficient pharmacotherapy for this group of patients. The efavirenz has excellent therapeutic potential, but has low aqueous solubility/bioavailability. METHODS: To minimize these limitations, multicomponent systems with ß-cyclodextrin and polyvinylpyrrolidone K-30 were obtained. Due to the limited number of pediatric antiretroviral formulations, the development of a pediatric orodispersible tablet is an alternative that is thought easy to administer, since it disintegrates rapidly in the oral cavity. The multicomponent systems were obtained by the method of kneading and characterized by solubility test, X-ray diffraction, differential scanning calorimetry and infrared absorption spectroscopy by Fourier transform. The orodispersible tablets were prepared by direct compression. The quality control of hardness, friability, disintegration, and dissolution was performed. The influence of the components of the formulation on the characteristics of the tablets was evaluated through a 22 factorial design added with three central points, to compare the effect of the dependent variables on the responses. RESULTS: An increase in drug solubility was observed, with a decrease in crystallinity. Besides that, an excellent dissolution profile presented with more than 83% of the drug's content dissolved in less than 15 minutes. Satisfactory disintegration time and friability were observed. CONCLUSION: It was observed that reduced concentrations of mannitol decreased the hardness and disintegration time of the formulations. The orodispersible tablet composed of efavirenz: ß- cyclodextrin: polyvinylpyrrolidone, favors greater absorption and bioavailability. It has several advantages for pediatric patients, as the dosage form disintegrates quickly in the mouth and does not require water for administration, thereby improving patient compliance with the treatment.


Subject(s)
Acquired Immunodeficiency Syndrome/drug therapy , Alkynes/therapeutic use , Benzoxazines/therapeutic use , Cyclopropanes/therapeutic use , Reverse Transcriptase Inhibitors/therapeutic use , beta-Cyclodextrins/therapeutic use , Administration, Oral , Calorimetry, Differential Scanning , Drug Compounding , Hardness , Humans , Pediatrics , Solubility , Tablets/chemistry
19.
Antibiotics (Basel) ; 9(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32659912

ABSTRACT

BACKGROUND: Opportunistic fungal infections are increasingly common, with Candida albicans being the most common etiological agent; however, in recent years, episodes of candidiasis caused by non-albicans Candida species have emerged. Plants belonging to the Lauraceae family have shown remarkable antifungal effects. This study assessed the anti-Candida activity of Ocotea glomerata extracts and fractions, time of death and the synergistic effects with conventional antifungals. The possible mechanism of action was also addressed. METHODS: Minimal inhibitory concentrations (MIC) were determined by broth microdilution technique, and the mechanism of action was assessed by ergosterol, sorbitol, cell viability, reactive oxygen species (ROS) generation and phosphatidylserine externalization tests. RESULTS: All the tested extracts evidenced antifungal activity, but the methanol extract was revealed to be the most effective (MIC = 3.12 µg/mL) on C. krusei. The combination of methanol extract with ketoconazole and fluconazole revealed a synergistic effect for C. krusei and C. albicans, respectively. Fractions 1 and 5 obtained from the methanol extract had fungicidal activity, mainly against C. krusei. Methanol extract did not reveal effects by ergosterol and sorbitol assays; however, it led to an increase in intracellular ROS levels, decreased cell viability, and consequently, cell death. CONCLUSION: O. glomerata methanol extract may be viewed as a rich source of biomolecules with antifungal activity against Candida spp.

20.
Drug Dev Ind Pharm ; 46(7): 1185-1198, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32536225

ABSTRACT

Objective: The development of medicinal plants for clinical use represents an important direction in biomedical research, despite the technological difficulties.Significance: The aim of this study was to compare pharmaceutical characteristics and in vitro release of Classical and Pickering emulsions containing crude or fractionated extracts of Libidibia ferrea.Methods: After evaluating the extract's solubility in formulation, a dispersion of hydroxypropyl methylcellulose (HPMC) was prepared in water. For Pickering emulsions, the aqueous phase was HPMC and the oil phase was Miglyol® 812; for Classical emulsions, water with Tween® 20 and Miglyol® 812 with Span® 80 were used for aqueous and oil phases, respectively. Crude or fractionated extracts were added to the aqueous phase (5% w/v). Both phases were heated (40 °C); then, the oil phase was poured into the aqueous phase and homogenized using an Ultra-Turrax. Emulsions were characterized for 90 days by pH, polyphenol content, phytomarker content, macroscopic characteristics, droplet size, and zeta potential.Results: These formulations displayed satisfactory stability for 90 days when stored at 25 °C. Regarding the investigation of rheological properties, Pickering emulsions displayed higher viscosity with lesser deformation than Classical emulsions. Moreover, the emulsions displayed similar in vitro release behavior.Conclusion: Based on the results of present study, the Pickering emulsions were obtainable and displayed higher stability than Classical emulsions. Additionally, maintenance of system integrity points to promising systems for delivery of active pharmaceutical ingredients in the internal phase, despite the complex chemical mixture added to the external phase.


Subject(s)
Plant Extracts , Water , Emulsions , Particle Size , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...