Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Fungi (Basel) ; 9(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37367556

ABSTRACT

Our previous studies indicated that endophyte M7SB41 (Seimatosporium sp.) can significantly enhance host plants powdery mildew (PM) resistance. To recover the mechanisms, differentially expressed genes (DEGs) were compared between E+ (endophte-inoculated) and E- (endophyte-free) plants by transcriptomics. A total of 4094, 1200 and 2319 DEGs between E+ and E- were identified at 0, 24, and 72 h after plants had been infected with PM pathogen Golovinomyces cichoracearum, respectively. Gene expression pattern analysis displayed a considerable difference and temporality in response to PM stress between the two groups. Transcriptional profiling analysis revealed that M7SB41 induced plant resistance to PM through Ca2+ signaling, salicylic acid (SA) signaling, and the phenylpropanoid biosynthesis pathway. In particular, we investigated the role and the timing of the SA and jasmonic acid (JA)-regulated defensive pathways. Both transcriptomes and pot experiments showed that SA-signaling may play a prominent role in PM resistance conferred by M7SB41. Additionally, the colonization of M7SB41 could effectively increase the activities and the expression of defense-related enzymes under PM pathogen stress. Meanwhile, our study revealed reliable candidate genes from TGA (TGACG motif-binding factor), WRKY, and pathogenesis-related genes related to M7SB41-mediate resistance. These findings offer a novel insight into the mechanisms of endophytes in activating plant defense responses.

2.
Braz J Microbiol ; 54(2): 949-964, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36857007

ABSTRACT

Mercury is a non-essential and toxic metal that induces toxicity in most organisms, but endophytic fungi can develop survival strategies to tolerate and respond to metal contaminants and other environmental stressors. The present study demonstrated the potential of mercury-resistant endophytic fungi in phytoremediation. We examined the functional traits involved in plant growth promotion, phytotoxicity mitigation, and mercury phytoremediation in seven fungi strains. The endophytic isolates synthesized the phytohormone indole-3-acetic acid, secreted siderophores, and solubilized phosphate in vitro. Inoculation of maize (Zea mays) plants with endophytes increased plant growth attributes by up to 76.25%. The endophytic fungi stimulated mercury uptake from the substrate and promoted its accumulation in plant tissues (t test, p < 0.05), preferentially in the roots, which thereby mitigated the impacts of metal phytotoxicity. Westerdykella aquatica P71 and the newly identified species Pseudomonodictys pantanalensis nov. A73 were the isolates that presented the best phytoremediation potential. Assembling and annotation of P. pantanalensis A73 and W. aquatica P71 genomes resulted in genome sizes of 45.7 and 31.8 Mb that encoded 17,774 and 11,240 protein-coding genes, respectively. Some clusters of genes detected were involved in the synthesis of secondary metabolites such as dimethylcoprogen (NRPS) and melanin (T1PKS), which are metal chelators with antioxidant activity; mercury resistance (merA and merR1); oxidative stress (PRX1 and TRX1); and plant growth promotion (trpS and iscU). Therefore, both fungi species are potential tools for the bioremediation of mercury-contaminated soils due to their ability to reduce phytotoxicity and assist phytoremediation.


Subject(s)
Ascomycota , Mercury , Soil Pollutants , Mercury/metabolism , Biodegradation, Environmental , Ascomycota/metabolism , Endophytes , Plant Growth Regulators/metabolism , Soil Pollutants/metabolism , Plant Roots/microbiology
3.
World J Microbiol Biotechnol ; 38(11): 210, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36050590

ABSTRACT

Pelidnota luridipes Blanchard (1850) is a tropical beetle of the family Scarabaeidae, whose larvae live on wood without parental care. Microbiota of mid- and hindgut of larvae was evaluated by culture-dependent and independent methods, and the results show a diverse microbiota, with most species of bacteria and fungi shared between midgut and hindgut. We isolated 272 bacterial and 29 yeast isolates, identified in 57 and 7 species, respectively, while using metabarcoding, we accessed 1,481 and 267 OTUs of bacteria and fungi, respectively. The composition and abundance of bacteria and fungi differed between mid- and hindgut, with a tendency for higher richness and diversity of yeasts in the midgut, and bacteria on the hindgut. Some taxa are abundant in the intestine of P. luridipes larvae, such as Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria; as well as Saccharomycetales and Trichosporonales yeasts. Mid- and hindgut metabolic profiles differ (e.g. biosynthesis of amino acids, cofactors, and lipopolysaccharides) with higher functional diversity in the hindgut. Isolates have different functional traits such as secretion of hydrolytic enzymes and antibiosis against pathogens. Apiotrichum siamense L29A and Bacillus sp. BL17B protected larvae of the moth Galleria mellonella, against infection by the pathogens Listeria monocytogenes ATCC19111 and Pseudomonas aeruginosa ATCC 9027. This is the first work with the larval microbiome of a Rutelini beetle, demonstrating its diversity and potential in prospecting microbial products as probiotics. The functional role of microbiota for the nutrition and adaptability of P. luridipes larvae needs to be evaluated in the future.


Subject(s)
Coleoptera , Gastrointestinal Microbiome , Probiotics , Animals , Bacteria , Fungi/genetics , Larva/microbiology , Metabolome , RNA, Ribosomal, 16S
4.
Physiother Theory Pract ; 38(1): 28-35, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32090670

ABSTRACT

Background: Post-stroke survivors with right hemisphere injury have more impairments in postural control and balance. However, the impact of the hemisphere injured on the process of balance reacquisition has not been fully explored. We hypothesized that stroke survivors could learn balance tasks (H1), but right hemisphere damaged patients would show poor motor learning if compared to left hemisphere damaged patients (H2)Objective: To investigate whether the brain-damaged side after stroke affects the learning of a balance task. Methods: Three groups were recruited: twenty stroke survivors (ten left and ten right hemisphere damage) and twenty healthy volunteers. The participants practiced a balance task for thirty minutes, four consecutive days. The task was the Table Tilt game (NintendoTM Company), which induces balance demands with a progression of complexity. Motor performance was assessed at baseline, post-practice and after one week (retention test). Accuracy, errors, and complexity of the task achieved during the trial were assessedResults: Participants in all groups improved their performance (p < .001) and maintained it at the retention test. The control group showed better performance if compared to the right and left hemisphere damaged stroke survivors (p < .05). There was no difference between individuals with right and left hemisphere damaged, but the right hemisphere damaged patients demonstrated more errors at higher levels of complexityConclusion: Stroke survivors can learn balance tasks (H1), and the right hemisphere damaged patients demonstrate more errors than those with left hemisphere injury in higher complexity conditions (H2).


Subject(s)
Stroke , Virtual Reality , Brain , Functional Laterality , Humans , Learning , Postural Balance , Stroke/complications , Stroke/diagnosis
5.
Microbiol Res ; 252: 126866, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34536678

ABSTRACT

Sugarcane (Saccharum spp.) has been produced worldwide as a relevant source of food and sustainable energy. However, the constant need to increase crop yield has led to excessive use of synthetic agrochemical inputs such as inorganic fertilizers, herbicides, and pesticides in plant cultures. It is known that these conventional practices can lead to deleterious effects on health and the environment. Organic farming emerges as a sustainable alternative to conventional systems; however, farm management influences in plant-associated microbiomes remain unclear. Here, the aim is to identify the effects of farming systems on the sugarcane microbiota. To address this issue, we sampled the microbiota from soils and plants under organic and conventional farming from two crop fields in Brazil. Then, we evaluated their compositional, structural, and functional traits through amplification and sequencing of phylogenetic markers of bacteria (16S rRNA gene, V3-V4 region) and fungi (Internal Transcribed Spacer - ITS2). The data processing and analyses by the DADA2 pipeline revealed 12,839 bacterial and 3,222 fungal sequence variants. Moreover, differences between analogous niches were detected considering the contrasting farming systems, with samples from the conventional system showing a slightly greater richness and diversity of microorganisms. The composition is also different between the farming systems, with 389 and 401 differentially abundant taxa for bacteria and fungi, respectively, including taxa capable of promoting plant growth. The microbial co-occurrence networks showed structural changes in microbial communities, where organic networks were more cohesive since they had closer taxa and less modularity by niches. Finally, the functional prediction revealed enriched metabolic pathways, including the increased presence of antimicrobial resistance in the conventional farming system. Taken together, our findings reveal functional, structural, and compositional adaptations of the microbial communities associated with sugarcane plants in the field, according to farming management. With this, we point out the need to unravel the mechanisms driving these adaptations.


Subject(s)
Agriculture , Biodiversity , Microbiota , Saccharum , Soil Microbiology , Agriculture/methods , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Farms , Fungi/classification , Fungi/genetics , Fungi/metabolism , Genes, Bacterial/genetics , Genes, Fungal/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Saccharum/microbiology
6.
Arch Microbiol ; 203(9): 5345-5361, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34387704

ABSTRACT

Aspergillus sp. A31 and Curvularia geniculata P1 are endophytes that colonize the roots of Aeschynomene fluminensis Vell. and Polygonum acuminatum Kunth. in humid environments contaminated with mercury. The two strains mitigated mercury toxicity and promoted Oryza sativa L growth. C. geniculata P1 stood out for increasing the host biomass by fourfold and reducing the negative effects of the metal on photosynthesis. Assembling and annotation of Aspergillus sp. A31 and C. geniculata P1 genomes resulted in 28.60 Mb (CG% 53.1; 10,312 coding DNA sequences) and 32.92 Mb (CG% 50.72; 8,692 coding DNA sequences), respectively. Twelve and 27 genomes of Curvularia/Bipolaris and Aspergillus were selected for phylogenomic analyzes, respectively. Phylogenetic analysis inferred the separation of species from the genus Curvularia and Bipolaris into different clades, and the separation of species from the genus Aspergillus into three clades; the species were distinguished by occupied niche. The genomes had essential gene clusters for the adaptation of microorganisms to high metal concentrations, such as proteins of the phytoquelatin-metal complex (GO: 0090423), metal ion binders (GO: 0046872), ABC transporters (GO: 0042626), ATPase transporters (GO: 0016887), and genes related to response to reactive oxygen species (GO: 0000302) and oxidative stress (GO: 0006979). The results reported here help to understand the unique regulatory mechanisms of mercury tolerance and plant development.


Subject(s)
Mercury , Oryza , Aspergillus/genetics , Curvularia , Endophytes , Mercury/toxicity , Phylogeny , Plant Roots
7.
3 Biotech ; 11(9): 396, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34422537

ABSTRACT

Actinobacteria is a phylum composed of aerobic, Gram-positive, and filamentous bacteria with a broad spectrum of biological activity, including antioxidant, antitumor, and antibiotic. The crude extract of Streptomyces griseocarneus R132 was fractionated on a C18 silica column and the isolated compound was identified by 1H and 13C nuclear magnetic resonance as 3-(phenylprop-2-enoic acid), also known as trans-cinnamic acid. Antimicrobial activity against human pathogens was assayed in vitro (disk-diffusion qualitative test) and in vivo using Galleria mellonella larvae (RT-qPCR). The methanol fractions 132-F30%, 132-F50%, 132-F70%, and 132-F100% inhibited the Escherichia coli (ATCC 25922) and Staphylococcus aureus (MRSA) growth in vitro the most effectively. Compared with the untreated control (60-80% of larvae death), the fractions and isolated trans-cinnamic acid increased the survival rate and modulated the immune system of G. mellonella larvae infected with pathogenic microorganisms. The anti-infection effect of the S. griseocarneus R132 fermentation product led us to sequence its genome, which was assembled and annotated using the Rast and antiSMASH platforms. The assembled genome consisted of 227 scaffolds represented on a linear chromosome of 8.85 Mb and 71.3% of GC. We detected conserved domains typical of enzymes that produce molecules with biological activity, such as polyketides and non-ribosomal and ribosomal peptides, indicating a great potential for obtaining new antibiotics and molecules with biotechnological application. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02942-1.

8.
Environ Monit Assess ; 193(8): 537, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34331150

ABSTRACT

Aquatic plants are considered to be important remedial agents in aquatic environments contaminated by metals. The Salvinia biloba macrophyte was evaluated in relation to its removal kinetics, adsorption capacity, and toxicology, aiming at its application in the removal of Cd+2 and Pb+2 ions from aqueous solutions. A batch-type system was used, in which the plants were cultivated in microcosms containing nutritive solution and metallic ions, stored in a controlled environment (pH, temperature, and luminosity). The removal kinetics consisted in the analysis of efficiency, varying the concentrations of the metals, and time of cultivation of plants in solution. To describe the process, adsorption isotherms were constructed with the equilibrium data, which were later adjusted to Langmuir and Freundlich models. The toxicological trial was performed by sub-acute exposure test of Caenorhabditis elegans nematode to phytoremediated solutions. The results highlight the remedial effect of the plant in solutions contaminated with both metals. The kinetic study demonstrated that the plant responds differently to metals, and physical-chemical and biological processes can be attributed to the removal of metals from the solution by the plant. The equilibrium time obtained was 48 h for both metals, and the adsorption capacity was higher for Cd2+. The toxicological evaluation indicates that there was a reduction in toxicity after the remediation of the solutions by S. biloba, for all times and concentrations evaluated. Salvinia biloba was efficient for the removal of Cd2+ and Pb2+ metals from aqueous solution. The plant is a low-cost metal biosorbent and can be considered promising for phytoremediation strategies in liquid effluents and water bodies.


Subject(s)
Cadmium , Water Pollutants, Chemical , Adsorption , Biomass , Cadmium/analysis , Environmental Monitoring , Hydrogen-Ion Concentration , Kinetics , Lead , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Arch Microbiol ; 203(7): 4313-4318, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34110481

ABSTRACT

The genus Absidia is widely used in the biotransformation of different classes of natural products. This study evaluates the ability of the Absidia coerulea 3A9 marine derived strain isolated from the ascidian Distaplia stilyfera to perform biotransformations by conducting assays with (-)-cubebin, as substrate. The experiment was optimized using the experimental design proposed by Plackett-Burman for seven factors and eight experiments, to establish the biotransformation conditions that would allow maximum production of biotransformed dibenzylbutyrolactone (-)-hinokinin. An analytical method based on Reverse-Phase-High Performance Liquid Chromatography (RP-HPLC) was developed to quantify the fungal biotransformation product. The factor that influenced the (-)-hinokinin peak area the most positively was the percentage of seawater (%seawater) given that its %relative standard deviation (%RSD) showed a 32.92% deviation from the real value.


Subject(s)
4-Butyrolactone/analogs & derivatives , Absidia , Benzodioxoles , Lignans , 4-Butyrolactone/chemical synthesis , Aquatic Organisms/metabolism , Benzodioxoles/chemical synthesis , Biotransformation , Lignans/chemical synthesis , Lignans/chemistry , Lignans/metabolism , Seawater/chemistry
10.
Microbiol Res ; 247: 126729, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33667983

ABSTRACT

Plant-associated microbiomes have been a target of interest for the prospection of microorganisms, which may be acting as effectors to increase agricultural productivity. For years, the search for beneficial microorganisms has been carried out from the characterization of functional traits of growth-promotion using tests with a few isolates. However, eventually, the expectations with positive results may not be realized when the evaluation is performed in association with plants. In our study, we accessed the cultivable sugarcane microbiome under two conditions of agronomic management: organic and conventional. From the use of a new customized culture medium, we recovered 944 endophytic and epiphytic bacterial communities derived from plant roots, stalks, leaves, and rhizospheric soil. This could be accomplished by using a large-scale approach, initially performing an in planta (Cynodon dactylon) screening process of inoculation to avoid early incompatibility. The inoculation was performed using the bacterial communities, considering that in this way, they could act synergistically. This process resulted in 38 candidate communities, 17 of which had higher Indole-3-acetic acid (IAA) production and phosphate solubilization activity and, were submitted to a new in planta test using Brachiaria ruziziensis and quantification of functional traits for growth-promotion and physiological tests. Enrichment analysis of selected communities has shown that they derived mainly from epiphytic populations of sugarcane stalks under conventional management. The sequencing of the V3-V4 region of the 16S rRNA gene revealed 34 genera and 24 species distributed among the phylum Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. We also observed a network of genera in these communities where the genus Chryseobacterium stands out with a greater degree of interaction, indicating a possible direct or indirect role as a keystone taxon in communities with plant-growth promotion capacities. From the results achieved, we can conclude that the approach is useful in the recovery of a set of sugarcane bacterial communities and that there is, evidence of synergistic action providing benefits to plants, and that they are compatible with plants of the same family (Poaceae). Thus, we are reporting the beneficial bacterial communities identified as suitable candidates with rated potential to be exploited as bioinoculants for crops.


Subject(s)
Bacteria/classification , Bacterial Physiological Phenomena , Microbiota/physiology , Plant Development , Saccharum/microbiology , Bacteria/genetics , Biodiversity , Crops, Agricultural/growth & development , Phylogeny , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Symbiosis
11.
J Invertebr Pathol ; 179: 107525, 2021 02.
Article in English | MEDLINE | ID: mdl-33383067

ABSTRACT

The growing spread of dengue, chikungunya and Zika viruses demand the development of new and environmentally safe control methods for their vector, the mosquito Aedes aegypti. This study aims to find novel larvicidal agents from mutualistic (endophytic and rhizospheric) or edaphic bacteria that have no action against non-target organisms. Eleven out of the 254 bacterial strains tested were able to kill Ae. aegypti larvae. Larvicidal activity did not depend on presence of cells, since culture supernatants or crude lipopeptide extracts (CLEs) killed the larvae. Bacillus safensis BacI67 and Bacillus paranthracis C21 supernatants were the best performing supernatants, displaying the lowest lethal concentrations (LC50 = 31.11 µL/mL and 45.84 µL/mL, respectively). Bacillus velezensis B64a and Bacillus velezensis B15 produced the best performing CLEs (LC50 = 0.11 mg/mL and 0.12 mg/mL, respectively). Mass spectrometry analysis of CLEs detected a mixture of surfactins, iturins, and fengycins. The samples tested were weakly- or non-toxic to mammalian cells (RAW 264.7 macrophages and VERO cells) and non-target organisms (Caenorhabditis elegans, Galleria mellonella, Scenedesmus obliquus, and Tetrahymena pyriformis) - especially B. velezensis B15 CLE. The biosynthetic gene clusters related to secondary metabolism identified by whole genome sequencing of the four best performing bacteria strains revealed clusters for bacteriocin, beta-lactone, lanthipeptide, non-ribosomal peptide synthetases, polyketide synthases (PKS), siderophores, T3PKS, type 1 PKS-like, terpenes, thiopeptides, and trans-AT-PKS. Purification of lipopeptides may clarify the mechanisms by which these extracts kill Ae. aegypti larvae.


Subject(s)
Aedes/physiology , Bacillus/metabolism , Mosquito Control , Aedes/growth & development , Aedes/microbiology , Animals , Caenorhabditis elegans/drug effects , Chlorocebus aethiops , Larva/growth & development , Larva/microbiology , Larva/physiology , Mice , Moths/drug effects , RAW 264.7 Cells/drug effects , Scenedesmus/drug effects , Tetrahymena pyriformis/drug effects , Toxicity Tests , Vero Cells/drug effects
12.
Rev. Soc. Bras. Med. Trop ; 54: e20200146, 2021. tab
Article in English | Sec. Est. Saúde SP, Coleciona SUS, LILACS | ID: biblio-1143889

ABSTRACT

Abstract INTRODUCTION: Aedes aegypti (L.) is the major vector of arboviruses that causes serious public health concerns in tropical and subtropical countries. METHODS: We examined the larvicidal activity of 1,2-diphenyldiselenide [(PhSe)2] and 1,2-bis(4-chlorophenyl) diselenide [(p-ClPhSe)2] and determine its toxicity to different non-target organisms. RESULTS: (PhSe)2 and (p-ClPhSe)2 killed Ae. aegypti L3 larvae with LC50/24h values of 65.63 µM (20.48 mg/L) and 355.19 µM (135.33 mg/L), respectively. (PhSe)2 was not toxic to the four model organisms. CONCLUSIONS: (PhSe)2 is a larvicidal compound with selective action against Ae. aegypti larvae. The mechanisms of action of (PhSe)2 under field conditions remain to be investigated.


Subject(s)
Animals , Aedes , Insecticides , Plant Extracts , Mosquito Vectors , Larva
13.
Rev Soc Bras Med Trop ; 54: e20200146, 2020.
Article in English | MEDLINE | ID: mdl-33338117

ABSTRACT

INTRODUCTION: Aedes aegypti (L.) is the major vector of arboviruses that causes serious public health concerns in tropical and subtropical countries. METHODS: We examined the larvicidal activity of 1,2-diphenyldiselenide [(PhSe)2] and 1,2-bis(4-chlorophenyl) diselenide [(p-ClPhSe)2] and determine its toxicity to different non-target organisms. RESULTS: (PhSe)2 and (p-ClPhSe)2 killed Ae. aegypti L3 larvae with LC50/24h values of 65.63 µM (20.48 mg/L) and 355.19 µM (135.33 mg/L), respectively. (PhSe)2 was not toxic to the four model organisms. CONCLUSIONS: (PhSe)2 is a larvicidal compound with selective action against Ae. aegypti larvae. The mechanisms of action of (PhSe)2 under field conditions remain to be investigated.


Subject(s)
Aedes , Insecticides , Animals , Larva , Mosquito Vectors , Plant Extracts
14.
Ecotoxicol Environ Saf ; 202: 110818, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32590206

ABSTRACT

The quantification, efficiency, and possible mechanisms of mercury phytoremediation by endophytic bacteria are poorly understood. Here we selected 8 out of 34 previously isolated endophytic bacterial strains with a broad resistance profile to metals and 11 antibiotics: Acinetobacter baumannii BacI43, Bacillus sp. BacI34, Enterobacter sp. BacI14, Klebsiella pneumoniae BacI20, Pantoea sp. BacI23, Pseudomonas sp. BacI7, Pseudomonas sp. BacI38, and Serratia marcescens BacI56. Except for Klebsiella pneumoniae BacI20, the other seven bacterial strains promoted maize growth on a mercury-contaminated substrate. Acinetobacter baumannii BacI43 and Bacillus sp. BacI34 increased total dry biomass by approximately 47%. The bacteria assisted mercury remediation by decreasing the metal amount in the substrate, possibly by promoting its volatilization. The plants inoculated with Serratia marcescens BacI56 and Pseudomonas sp. BacI38 increased mercury volatilization to 47.16% and 62.42%, respectively. Except for Bacillus sp. BacI34 and Pantoea sp. BacI23, the other six bacterial strains favored mercury bioaccumulation in plant tissues. Endophytic bacteria-assisted phytoremediation contributed to reduce the substrate toxicity assessed in different model organisms. The endophytic bacterial strains selected herein are potential candidates for assisted phytoremediation that shall help reduce environmental toxicity of mercury-contaminated soils.


Subject(s)
Biodegradation, Environmental , Mercury/analysis , Soil Pollutants/analysis , Bacillus , Bioaccumulation , Enterobacter , Plants , Pseudomonas , Volatilization
15.
Environ Sci Pollut Res Int ; 27(12): 13550-13564, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32030584

ABSTRACT

This study examined how soil mercury contamination affected the structure and functionality of rhizobacteria communities from Aeschynomene fluminensis and Polygonum acuminatum and how rhizobacteria mediate metal bioremediation. The strains were isolated using culture-dependent methods, identified through 16S rDNA gene sequencing, and characterized with respect to their functional traits related to plant growth promotion and resistance to metals and antibiotics. The bioremediation capacity of the rhizobacteria was determined in greenhouse using corn plants. The isolated bacteria belonged to the phyla Actinobacteria, Deinococcus-Thermus, Firmicutes, and Proteobacteria, with great abundance of the species Microbacterium trichothecenolyticum. The rhizobacteria abundance, richness, and diversity were greater in mercury-contaminated soils. Bacteria isolated from contaminated environments had higher minimum inhibitory concentration values, presented plasmids and the merA gene, and were multi-resistant to metals and antibiotics. Enterobacter sp._C35 and M. trichothecenolyticum_C34 significantly improved (Dunnett's test, p < 0.05) corn plant growth in mercury-contaminated soil. These bacteria helped to reduce up to 87% of the mercury content in the soil, and increased the mercury bioaccumulation factor by up to 94%. Mercury bioremediation mitigated toxicity of the contaminated substrate. Enterobacter sp._C35, Bacillus megaterium_C28, and Bacillus mycoides_C1 stimulated corn plant growth and could be added to biofertilizers produced in research and related industries.


Subject(s)
Mercury , Soil Pollutants , Actinobacteria , Bacillus , Biodegradation, Environmental , Brazil , Microbacterium , Soil Microbiology , Wetlands
16.
Chemosphere ; 240: 124874, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31546184

ABSTRACT

The present study proposes the use of endophytic fungi for mercury bioremediation in in vitro and host-associated systems. We examined mercury resistance in 32 strains of endophytic fungi grown in culture medium supplemented with toxic metal concentrations. The residual mercury concentrations were quantified after mycelial growth. Aspergillus sp. A31, Curvularia geniculata P1, Lindgomycetaceae P87, and Westerdykella sp. P71 were selected and further tested for mercury bioremediation and bioaccumulation in vitro, as well as for growth promotion of Aeschynomene fluminensis and Zea mays in the presence or absence of the metal. Aspergillus sp. A31, C. geniculata P1, Lindgomycetaceae P87 and Westerdykella sp. P71 removed up to 100% of mercury from the culture medium in a species-dependent manner and they promoted A. fluminensis and Z. mays growth in substrates containing mercury or not (Dunnett's test, p < 0.05). Lindgomycetaceae P87 and C. geniculata P1 are dark septate endophytic fungi that endophytically colonize root cells of their host plants. The increase of host biomass correlated with the reduction of soil mercury concentration due to the metal bioaccumulation in host tissues and its possible volatilization. The soil mercury concentration was decreased by 7.69% and 57.14% in A. fluminensis plants inoculated with Lindgomycetaceae P87 + Aspergillus sp. A31 and Lindgomycetaceae P87, respectively (Dunnet's test, p < 0.05). The resistance mechanisms of mercury volatilization and bioaccumulation in plant tissues mediated by these endophytic fungi can contribute to bioremediation programs. The biochemical and genetic mechanisms involved in bioaccumulation and volatilization need to be elucidated in the future.


Subject(s)
Biodegradation, Environmental , Fungi/chemistry , Mercury/chemistry
17.
Braz J Microbiol ; 51(1): 243-253, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31656023

ABSTRACT

The association of plant with microorganisms, such as dark septate endophytic fungi, has mitigated the harmful effects of chemical, physical, and biological agents on the host. The objective of this work was to evaluate the interaction of the dark septate endophytic fungi with cowpea plants under salt stress. Endophytic fungi were isolated from Vochysia divergens root system, and molecular identification of fungi was performed by sequencing the ITS region. We selected and identified Sordariomycetes sp1-B'2 and Melanconiella elegans-21W2 for their ability to infect V. divergens root in vitro with development of typical dark septate fungi structures. Cowpea plants-inoculated or not inoculated with Sordariomycetes sp1-B'2 and M. elegans 21W2-were cultivated in 5-L pots under greenhouse conditions and submitted to four different electrical conductivities of irrigation water (1.2, 2.2, 3.6, and 5.0 dS m-1). The salinity caused decrease in leaf concentration of K and increased leaf concentration of calcium, sodium, and chlorine; and no influence of dark septate endophytic fungi was observed in these responses. On the other hand, root colonization with Sordariomycetes sp1-B'2 and M. elegans 21W2 resulted in improved nutrition with N and P in cowpea under salt stress, favoring the growth and rate of liquid photosynthesis. However, such positive responses were evident only at moderate levels of salinity.


Subject(s)
Ascomycota/isolation & purification , Endophytes/isolation & purification , Salt Stress , Vigna/microbiology , Calcium/metabolism , Chlorine/metabolism , Mycorrhizae , Myrtales/microbiology , Photosynthesis , Plant Leaves/metabolism , Plant Roots/microbiology , Plants/microbiology , Potassium/metabolism , Salinity , Sodium/metabolism , Vigna/growth & development , Vigna/metabolism
18.
World J Microbiol Biotechnol ; 35(12): 182, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31728757

ABSTRACT

Endophytes improve the host performance in areas of high plant endemicity. Paullinia cupana is an Amazonia plant species of economic and social importance due to the high caffeine concentration in its seeds. An interesting strategy to identify endophytic microorganisms with potential biotechnological application is to understand the factors that influence the endophytic community to rationalize the host management programs. We used the next-generation sequencing for bacterial 16S rRNA gene to examine how the P. cupana organ, genotype, and geographic location influenced its endophytic bacterial community. We obtained 1520 operational taxonomic units (OTUs) distributed in 19 phyla, 32 classes, 79 orders, 114 families and 174 genera. The P. cupana roots and leaves were specifically colonized by the bacterial genera Acidothermus and Porphyromonas, respectively, with high relative frequency. The plant organ type influenced the endophytic community's richness, diversity, OTUs composition, relative abundance of phyla and genera, and genera interaction network. However, the host plant genotype and geographic location influenced the composition and interaction among genera in the network analysis. Prevotella is a super-generalist genus in the interaction network of endophytic bacteria of P. cupana. This study revealed endophytic bacterial groups of importance to P. cupana and stressed that the host plant organ modulates the structure and interactions within this community. Our results indicated that the microbial community adapted to colonize P. cupana by adjusting to its composition and interaction network. The isolation of abundant and super-generalist bacterial genera shall help to examine their functionality to the composition and fitness of the endophytic community of P. cupana.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Ecology , Endophytes/classification , Endophytes/isolation & purification , Paullinia/microbiology , Bacteria/genetics , Brazil , DNA, Bacterial/isolation & purification , Endophytes/genetics , Genotype , High-Throughput Nucleotide Sequencing , Microbial Interactions , Microbiota/genetics , Phylogeny , Plant Leaves/microbiology , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Seeds/microbiology
19.
Photochem Photobiol Sci ; 18(6): 1350-1358, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30915429

ABSTRACT

Indole derivatives were synthetized based on the Fischer indole methodology using different phenyl hydrazine hydrochlorides and either cyclohexanone or 2-butanone. The pre- and post-emergent herbicidal activities were evaluated against Ipomoea grandifolia. A carbazole, 6-chloro-2,3,4,9-tetrahydro-1H-carbazole (3b), decreased the PIabs parameter by 32% and increased the cross-section related parameters, indicating the inactivation of the reaction center on photosystem II. Compound 3b acts as a post-emergent herbicide prototype since dry biomass was reduced by 50%, corroborating the fluorescence results. Comparing instead with a germination experiment, 2,3,4,9-tetrahydro-1H-carbazole (3a) was found to be the most effective agent, inhibiting seed germination by 22% and decreasing root length by 50%. The tetrahydrocarbazoles showed better results than indole derivatives potentially due to the presence of methylene groups at structures, which increase the compounds' lipophilicity and may facilitate their access to the plant. In addition, electron withdrawing groups on the aromatic ring were found to correlate with increased herbicide activity. Further optimization of this series towards the development of herbicides is ongoing.


Subject(s)
Growth Inhibitors/pharmacology , Herbicides/pharmacology , Indoles/pharmacology , Ipomoea/drug effects , Dose-Response Relationship, Drug , Growth Inhibitors/chemical synthesis , Growth Inhibitors/chemistry , Herbicides/chemical synthesis , Herbicides/chemistry , Indoles/chemical synthesis , Indoles/chemistry , Ipomoea/growth & development , Molecular Structure , Structure-Activity Relationship
20.
Motriz (Online) ; 25(1): e101915, 2019. tab, ilus
Article in English | LILACS | ID: biblio-1012685

ABSTRACT

Aim: This study aims to investigate the effects of the type of extrinsic feedback provided equally in terms of timing and frequency of delivery on the motor learning after stroke. Methods: Twenty post-stroke individuals were distributed randomly into two groups according to the type of feedback provided: knowledge of performance experimental group (KPEG) and knowledge of results experimental group (KREG). Additionally, a control group (CG) was consisted of 20 healthy individuals age- and feedback-matched with the experimental groups. The task was a pointing skill performed in a virtual reality system. The acquisition phase consisted of 3 days/ 75 trials per day. Two retention tests (ret1 and ret2) were run after four days from the acquisition phase. Dependent variable measures were defined by motor performance and movement pattern. Results: The statistical analysis showed interaction effect F(3,108 = 49.13, p = 0.01) among KPEG and KREG. Based on the motor performance parameters (score) the KPEG improved performance significantly from pre to post (p = 0.001), and maintain it from pre to ret1 (p = 0.002), and from the pre to ret2 (p = 0.001). However, the KREG only showed a difference in motor performance from the pre to post (p = 0.003). Compared to the KREG, the KPEG showed improvement on the movement pattern based on the smoothness (p = 0.004), which suggests that the KPEG performed more corrections of movements in relation to the CG and KREG groups. Conclusion: These findings suggest that KP allowed better motor learning in individuals after stroke.(AU)


Subject(s)
Humans , Stroke , Motor Activity , Psychomotor Performance , Feedback
SELECTION OF CITATIONS
SEARCH DETAIL
...