Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Pathog ; 13(1): 27, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33910644

ABSTRACT

BACKGROUND: Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic agent worldwide. The aim of this work was to compare genetically 117 S. Typhimurium isolated from different sources over 30 years in Brazil using different genomics strategies. RESULTS: The majority of the 117 S. Typhimurium strains studied were grouped into a single cluster (≅ 90%) by the core genome multilocus sequence typing and (≅ 77%) by single copy marker genes. The phylogenetic analysis based on single nucleotide polymorphism (SNP) grouped most strains from humans into a single cluster (≅ 93%), while the strains isolated from food and swine were alocated into three clusters. The different orthologous protein clusters found for some S. Typhimurium isolated from humans and food are involved in metabolic and regulatory processes. For 26 isolates from swine the sequence types (ST) 19 and ST1921 were the most prevalent ones, and the ST14, ST64, ST516 and ST639 were also detected. Previous results typed the 91 S. Typhimurium isolates from humans and foods as ST19, ST313, ST1921, ST3343 and ST1649. The main prophages detected were: Gifsy-2 in 79 (67.5%) and Gifsy-1 in 63 (54%) strains. All of the S. Typhimurium isolates contained the acrA, acrB, macA, macB, mdtK, emrA, emrB, emrR and tolC efflux pump genes. CONCLUSIONS: The phylogenetic trees grouped the majority of the S. Typhimurium isolates from humans into a single cluster suggesting that there is one prevalent subtype in Brazil. Regarding strains isolated from food and swine, the SNPs' results suggested the circulation of more than one subtype over 30 years in this country. The orthologous protein clusters analysis revealed unique genes in the strains studied mainly related to bacterial metabolism. S. Typhimurium strains from swine showed greater diversity of STs and prophages in comparison to strains isolated from humans and foods. The pathogenic potential of S. Typhimurium strains was corroborated by the presence of exclusive prophages of this serovar involved in its virulence. The high number of resistance genes related to efflux pumps is worrying and may lead to therapeutic failures when clinical treatment is needed.

2.
Front Microbiol ; 8: 876, 2017.
Article in English | MEDLINE | ID: mdl-28579977

ABSTRACT

A bacteriocinogenic Lactobacillus rhamnosus L156.4 strain isolated from the feces of NIH mice was identified by 16S rRNA gene sequencing and MALDI-TOF mass spectrometry. The entire genome was sequenced using Illumina, annotated in the PGAAP, and RAST servers, and deposited. Conserved genes associated with bacteriocin synthesis were predicted using BAGEL3, leading to the identification of an open reading frame (ORF) that shows homology with the L. rhamnosus GG (ATCC 53103) prebacteriocin gene. The encoded protein contains a conserved protein motif associated a structural gene of the Enterocin A superfamily. We found ORFs related to the prebacteriocin, immunity protein, ABC transporter proteins, and regulatory genes with 100% identity to those of L. rhamnosus HN001. In this study, we provide evidence of a putative bacteriocin produced by L. rhamnosus L156.4 that was further confirmed by in vitro assays. The antibacterial activity of the substances produced by this strain was evaluated using the deferred agar-spot and spot-on-the lawn assays, and a wide antimicrobial activity spectrum against human and foodborne pathogens was observed. The physicochemical characterization of the putative bacteriocin indicated that it was sensitive to proteolytic enzymes, heat stable and maintained its antibacterial activity in a pH ranging from 3 to 9. The activity against Lactobacillus fermentum, which was used as an indicator strain, was detected during bacterial logarithmic growth phase, and a positive correlation was confirmed between bacterial growth and production of the putative bacteriocin. After a partial purification from cell-free supernatant by salt precipitation, the putative bacteriocin migrated as a diffuse band of approximately 1.0-3.0 kDa by SDS-PAGE. Additional studies are being conducted to explore its use in the food industry for controlling bacterial growth and for probiotic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...