Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Braz Dent J ; 30(5): 453-458, 2019.
Article in English | MEDLINE | ID: mdl-31596329

ABSTRACT

The aim of this study was to analyze the effects of MTA on the structure and enzymatic activity of sPLA2 in order to provide subsidies for improvement in the formulation of the product. MTA powder was incubated for 60 min in the presence of sPLA2 and was analyzed by chromatography, electrospray mass (ESI-MS) and small-angle X-ray scattering (SAXS). It was find that the elution profile, retention time, and fragmentation of sPLA2 were altered after treatment with MTA. Calcium was the MTA component that most amplified the inflammatory signal. Significant interactions were found between MTA and sPLA2, which could aid in our understanding of the mechanisms of action of MTA during the inflammatory process and it may facilitate the structural modification of MTA, thereby improving its biological safety and consequently the rate of the treatment success.


Subject(s)
Root Canal Filling Materials , Aluminum Compounds , Calcium Compounds , Drug Combinations , Oxides , Scattering, Small Angle , Silicates , X-Ray Diffraction
2.
Braz. dent. j ; 30(5): 453-458, Sept.-Oct. 2019. graf
Article in English | LILACS | ID: biblio-1039141

ABSTRACT

Abstract The aim of this study was to analyze the effects of MTA on the structure and enzymatic activity of sPLA2 in order to provide subsidies for improvement in the formulation of the product. MTA powder was incubated for 60 min in the presence of sPLA2 and was analyzed by chromatography, electrospray mass (ESI-MS) and small-angle X-ray scattering (SAXS). It was find that the elution profile, retention time, and fragmentation of sPLA2 were altered after treatment with MTA. Calcium was the MTA component that most amplified the inflammatory signal. Significant interactions were found between MTA and sPLA2, which could aid in our understanding of the mechanisms of action of MTA during the inflammatory process and it may facilitate the structural modification of MTA, thereby improving its biological safety and consequently the rate of the treatment success.


Resumo O objetivo deste estudo foi analisar os efeitos do MTA na estrutura e atividade enzimática da sPLA2 a fim de fornecer subsídios para melhoria na formulação do produto. O MTA em pó foi incubado por 60 min na presença de sPLA2 e analisado por cromatografia, espectroscopia de massa por eletropulverização (ESI-MS) e espalhamento de raios-X de baixo ângulo (SAXS). Encontrou-se que o perfil de eluição, o tempo de retenção e a fragmentação da sPLA2 foram alterados após o tratamento com MTA. O cálcio foi o componente do MTA que mais ampliou o sinal inflamatório. Encontraram-se interações significativas entre o MTA e o sPLA2, o que poderia auxiliar na compreensão dos mecanismos de ação do MTA durante o processo inflamatório e facilitar a modificação estrutural do MTA, melhorando sua segurança biológica e consequentemente a taxa de sucesso do tratamento.


Subject(s)
Root Canal Filling Materials , Oxides , X-Ray Diffraction , Silicates , Calcium Compounds , Aluminum Compounds , Drug Combinations , Scattering, Small Angle
3.
BMC Complement Altern Med ; 12: 139, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-22925825

ABSTRACT

BACKGROUND: Harpalycin 2 (HP-2) is an isoflavone isolated from the leaves of Harpalyce brasiliana Benth., a snakeroot found in northeast region of Brazil and used in folk medicine to treat snakebite. Its leaves are said to be anti-inflammatory. Secretory phospholipases A2 are important toxins found in snake venom and are structurally related to those found in inflammatory conditions in mammals, as in arthritis and atherosclerosis, and for this reason can be valuable tools for searching new anti-phospholipase A2 drugs. METHODS: HP-2 and piratoxin-III (PrTX-III) were purified through chromatographic techniques. The effect of HP-2 in the enzymatic activity of PrTX-III was carried out using 4-nitro-3-octanoyloxy-benzoic acid as the substrate. PrTX-III induced platelet aggregation was inhibited by HP-2 when compared to aristolochic acid and p-bromophenacyl bromide (p-BPB). In an attempt to elucidate how HP-2 interacts with PrTX-III, mass spectrometry, circular dichroism and intrinsic fluorescence analysis were performed. Docking scores of the ligands (HP-2, aristolochic acid and p-BPB) using PrTX-III as target were also calculated. RESULTS: HP-2 inhibited the enzymatic activity of PrTX-III (IC50 11.34 ± 0.28 µg/mL) although it did not form a stable chemical complex in the active site, since mass spectrometry measurements showed no difference between native (13,837.34 Da) and HP-2 treated PrTX-III (13,856.12 Da). A structural analysis of PrTX-III after treatment with HP-2 showed a decrease in dimerization and a slight protein unfolding. In the platelet aggregation assay, HP-2 previously incubated with PrTX-III inhibited the aggregation when compared with untreated protein. PrTX-III chemical treated with aristolochic acid and p-BPB, two standard PLA2 inhibitors, showed low inhibitory effects when compared with the HP-2 treatment. Docking scores corroborated these results, showing higher affinity of HP-2 for the PrTX-III target (PDB code: 1GMZ) than aristolochic acid and p-BPB. HP-2 previous incubated with the platelets inhibits the aggregation induced by untreated PrTX-III as well as arachidonic acid. CONCLUSION: HP-2 changes the structure of PrTX-III, inhibiting the enzymatic activity of this enzyme. In addition, PrTX-III platelet aggregant activity was inhibited by treatment with HP-2, p-BPB and aristolochic acid, and these results were corroborated by docking scores.


Subject(s)
Benzodioxoles/pharmacology , Bothrops , Crotalid Venoms/enzymology , Enzyme Inhibitors/pharmacology , Fabaceae/chemistry , Group II Phospholipases A2/antagonists & inhibitors , Isoflavones/pharmacology , Platelet Aggregation/drug effects , Acetophenones/pharmacology , Animals , Aristolochic Acids/pharmacology , Benzodioxoles/isolation & purification , Benzodioxoles/therapeutic use , Brazil , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/therapeutic use , Group II Phospholipases A2/chemistry , Humans , Isoflavones/isolation & purification , Isoflavones/therapeutic use , Nitrobenzoates/metabolism , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves , Reptilian Proteins/antagonists & inhibitors , Reptilian Proteins/chemistry , Snake Bites/drug therapy , Snake Bites/enzymology
4.
Article in English | MEDLINE | ID: mdl-22899963

ABSTRACT

Secretory phospholipases A(2) (sPLA(2)) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA(2) from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA(2) tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA(2) administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA(2)s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA(2) inhibition.

5.
Nat Prod Commun ; 6(7): 983-4, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21834238

ABSTRACT

Cytotoxicity assays are needed for the screening of natural products with potential anti-inflammatory. The purpose of this study was to compare the basal cytotoxicity of active ingredients extracted from plants of the Brazilian "cerrado". The viability was assayed with the neutral red uptake assay in Mac Coy cells after 24h of exposition. The dose evaluated was 50 microg/microL. The test substances were: cinnamic acid, p-coumaric acid, chlorogenic acid, syringic acid, vannilic acid, homogentisic acid, scandenin, palustric acid, diosgenin, cabraleone. Studies of cytotoxicity demonstrated that all active compounds evaluated have low toxicity in vitro. The substances showed cell viability above 60% for the concentration used. However, the cinnamic acid, sacandenin and palustric acid showed highest toxicity with a 50% reduction in cell viability for the dose of 50 microg/microL. Cytotoxic screening results are useful to estimate the best concentrations of those compounds with potential anti-inflammatory without their cause cell death.


Subject(s)
Cytotoxins/chemistry , Cytotoxins/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants/chemistry , Animals , Brazil , Cell Line , Cell Survival/drug effects , Mice
6.
Molecules ; 16(1): 738-61, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-21245808

ABSTRACT

In this work we have characterized the action of the naringin, a flavonoid found in grapefruit and known for its various pharmacological effects, which include antioxidant blood lipid lowering and anticancer activity, on the structure and biochemical activities of a secretory phospholipase A (sPLA2) from Crotalus durissus cascavella, an important protein involved in the releasinge of arachidonic acid in phospholipid membranes. sPLA2 was incubated with naringin (mol:mol) at 37 °C and a discrete reduction in the UV scanning signal and a modification of the circular dichroism spectra were observed after treatment with naringin, suggesting modifications of the secondary structure of the protein. This flavonoid was able to decrease enzymatic activity and some pharmacological effects, such as myonecrosis, platelet aggregation, and neurotoxic activity caused by sPLA2, however, the inflammatory effect was not affected by naringin. In addition, small angle X-ray scattering (SAXS) data were collected for sPLA2 and naringin-treated sPLA2 to evaluate possible modifications of the protein structure. These structural investigations have shown that sPLA2 is an elongated dimer in solution and after treatment with naringin a conformational change in the dimeric configuration was observed. Our results suggest that structural modification may be correlated with the loss of enzymatic activity and alterations in pharmacological properties.


Subject(s)
Crotalus/metabolism , Flavanones/pharmacology , Phospholipases A2, Secretory/antagonists & inhibitors , Animals , Rats , Scattering, Radiation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...