Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 350: 140911, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145844

ABSTRACT

The quality and safety of water sources have been significantly impacted by various pollutants, including trace elements. To address this concern, this study utilized composite beads made of alginate and carbon quantum dots (CDs) for detecting and removing As(III) and Se(IV) ions in tap water. Fluorescent CDs were hydrothermally synthesized and incorporated into an alginate-Ca2+ matrix through a straightforward procedure. Characterization analyses revealed distinct properties of the composite beads, containing varying amounts of CDs, compared to the pristine beads. Optimal adsorption parameters (30 mg of adsorbent, 10 mg/L of initial pollutant concentration, 35 °C, and 180 min of contact time) for the beads containing 30 w/w-% of CDs (Alg@CDs30) were determined through a fractional factorial design. These composite beads exhibited the highest adsorption capacity for both metals, achieving a removal rate of 94.5% for As(III) and 98.0% for Se(IV) in tap water. Kinetic and isothermal analyses indicated that the adsorption of both metals on Alg@CDs30 involves a combination of chemisorption and diffusion processes. Recycling experiments demonstrated that the composite beads could be reused up to 20 times without a noticeable loss of adsorption efficiency. Regarding the sensing property, our experiments revealed a significant reduction in the fluorescence emission intensity of Alg@CDs30 upon interaction with As(III) and Se(IV), confirming its ability to detect both ions in tap water, with limits of detection (LOD) of 2.6 ± 0.5 µg/L for As(III) and 1.1 ± 0.2 µg/L for Se(IV). The alginate-Ca2+ matrix s contributed to the stability of the CDs' fluorescence. These results confirm the potential of Alg@CDs beads as effective tools for the simultaneous monitoring and removal of hazardous metal ions from real water samples.


Subject(s)
Water Pollutants, Chemical , Water , Water/analysis , Coloring Agents/analysis , Metals/analysis , Alginates , Environmental Monitoring , Water Pollutants, Chemical/analysis , Adsorption , Kinetics , Hydrogen-Ion Concentration
2.
Int J Pharm ; 642: 123174, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37364783

ABSTRACT

New compounds and pharmacological strategies offer alternatives for treating chronic skin diseases, such as atopic dermatitis (AD). Here, we investigated the incorporation of 1,4-anhydro-4-seleno-d-talitol (SeTal), a bioactive seleno-organic compound, in gelatin and alginate (Gel-Alg) polymeric films as a strategy for improving the treatment and attenuation of AD-like symptoms in a mice model. Hydrocortisone (HC) or vitamin C (VitC) were incorporated with SeTal in the Gel-Alg films, and their synergy was investigated. All the prepared film samples were able to retain and release SeTal in a controlled manner. In addition, appreciable film handling facilitates SeTal administration. A series of in-vivo/ex-vivo experiments were performed using mice sensitized with dinitrochlorobenzene (DNCB), which induces AD-like symptoms. Long-term topical application of the loaded Gel-Alg films attenuated disease symptoms and pruritus, with suppression of the levels of inflammatory markers, oxidative damage, and the skin lesions associated with AD. Moreover, the loaded films showed superior efficiency in attenuating the analyzed symptoms when compared to hydrocortisone (HC) cream, a traditional AD-treatment, and decreased the inherent drawbacks of this compound. In short, incorporating SeTal (by itself or with HC or VitC) in biopolymeric films provides a promising alternative for the long-term treatment of AD-type skin diseases.


Subject(s)
Dermatitis, Atopic , Mice , Animals , Dermatitis, Atopic/drug therapy , Alginates , Hydrocortisone , Gelatin , Skin/metabolism , Mice, Inbred BALB C , Cytokines/metabolism
3.
Chemosphere ; 316: 137734, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36608886

ABSTRACT

The physicochemical and structural characteristics of the magnetic materials can be modulable due to exposition to a magnetic field, which allows, for example, to enhance its adsorption performance. In this sense, this study describes the preparation of magnetic beads of alginate/polypyrrole/ZnFe2O4 (Alg/PPy/ZnFe2O4) and investigates the effect of an external magnetic field (EMF) on their adsorption performance towards two overconsumed drugs, acetaminophen (ACT) and ibuprofen (IBU). Characterization analyses confirmed the composite formation and magnetic nature of Alg/PPy/ZnFe2O4. Conversely to the pristine beads (Alg/PPy), the presence of an EMF altered the swelling and pHPZC behavior of the magnetic beads, indicating that these properties are affected by this external stimulus. Batch experiments revealed that the amount of ACT and IBU adsorbed by Alg/PPy/ZnFe2O4 in 60-70 min is appreciably high (106.7 ad 108.2 mg/g). The presence of an EMF modulated the structure of Alg/PPy/ZnFe2O4 beads enhancing their adsorption capacity towards ACT and IBU by 14% and 12% compared to Alg/PPy. Kinetic analysis revealed that the adsorption of both drugs on Alg/PPy/ZnFe2O4 followed a pseudo-second-order. Besides, the adsorption mechanism was fitted by the Freundlich isotherm. Reuse experiments showed that the magnetic beads keep a high adsorption capacity for both drugs even after ten consecutive reuse cycles. The results presented here suggest that magnetic-responsive materials like Alg/PPy/ZnFe2O4 are prominent and modulable tools for improving the treatment of water/wastewater containing this class of contaminants.


Subject(s)
Polymers , Water Pollutants, Chemical , Pyrroles , Adsorption , Alginates/chemistry , Kinetics , Water/chemistry , Magnetic Fields , Pharmaceutical Preparations , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...