Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sports Med ; 31(6): 831-845, 2023.
Article in English | MEDLINE | ID: mdl-35341406

ABSTRACT

The objective of this article was to assess the effects of six-week pre-season training on whole-body and regional bioelectrical impedance analysis (BIA)-derived parameters, body composition, power, and aerobic performance in professional soccer players. Ten professional soccer athletes participated in the present study. Whole-body and regional hamstrings BIA-derived parameters [resistance, reactance, impedance, phase angle (PhA)], body composition, total body water (TBW), intracellular (ICW), and extracellular (ECW) were measured before, at mid-point, and after sixth week of the pre-season. Power (countermovement jump and squat jump) and aerobic capacity (Yo-Yo test) were measured before and after pre-season. There was a significant increase in the regional PhA (+13.9%) but not in the whole-body. There was a reduction in fat mass (-4.1%), an increase in fat-free mass (+1.7%), TBW (+8.3%), ICW (+8.8%), and ECW (+7.6%), as well as an increase in jump height (+11.0%) and distance covered in the Yo-Yo test (+34.7%). From our results, it is possible to suggest that pre-season training can induce an increase in hamstring PhA as well as body recomposition and improvement of physical fitness in professional soccer players.

2.
Antioxidants (Basel) ; 9(1)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936265

ABSTRACT

The enzymatic complex Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase (NOx) may be the principal source of reactive oxygen species (ROS). The NOX2 and NOX4 isoforms are tissue-dependent and are differentially expressed in slow-twitch fibers (type I fibers) and fast-twitch fibers (type II fibers) of skeletal muscle, making them different markers of ROS metabolism induced by physical exercise. The aim of this study was to investigate NOx signaling, as a non-adaptive and non-cumulative response, in the predominant fiber types of rat skeletal muscles 24 h after one strenuous treadmill exercise session. The levels of mRNA, reduced glycogen, thiol content, NOx, superoxide dismutase, catalase, glutathione peroxidase activity, and PPARGC1α and SLC2A4 gene expression were measured in the white gastrocnemius (WG) portion, the red gastrocnemius (RG) portion, and the soleus muscle (SOL). NOx activity showed higher values in the SOL muscle compared to the RG and WG portions. The same was true of the NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, glycogen content. Twenty-four hours after the strenuous exercise session, NOx expression increased in slow-twitch oxidative fibers. The acute strenuous exercise condition showed an attenuation of oxidative stress and an upregulation of antioxidant activity through PPARGC1α gene activity, antioxidant defense adaptations, and differential gene expression according to the predominant fiber type. The most prominent location of detoxification (indicated by NOX4 activation) in the slow-twitch oxidative SOL muscle was the mitochondria, while the fast-twitch oxidative RG portion showed a more cytosolic location. Glycolytic metabolism in the WG portion suggested possible NOX2/NOX4 non-regulation, indicating other possible ROS regulation pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...