Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Sci Adv ; 10(13): eadi4310, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536923

ABSTRACT

The maintenance of regulatory T (Treg) cells critically prevents autoimmunity. Pre-B cell leukemia transcription factor 1 (Pbx1) variants are associated with lupus susceptibility, particularly through the expression of a dominant negative isoform Pbx1-d in CD4+ T cells. Pbx1-d overexpression impaired Treg cell homeostasis and promoted inflammatory CD4+ T cells. Here, we showed a high expression of Pbx1 in human and murine Treg cells, which is decreased in lupus patients and mice. Pbx1 deficiency or Pbx1-d overexpression reduced the number, stability, and suppressive activity of Treg cells, which increased murine responses to immunization and autoimmune induction. Mechanistically, Pbx1 deficiency altered the expression of genes implicated in cell cycle and apoptosis in Treg cells. Intriguingly, Rtkn2, a Rho-GTPase previously associated with Treg homeostasis, was directly transactivated by Pbx1. Our results suggest that the maintenance of Treg cell homeostasis and stability by Pbx1 through cell cycle progression prevent the expansion of inflammatory T cells that otherwise exacerbates lupus progression in the hosts.


Subject(s)
Lupus Erythematosus, Systemic , T-Lymphocytes, Regulatory , Animals , Humans , Mice , Cell Division , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Protein Isoforms/genetics , Lupus Erythematosus, Systemic/genetics
2.
Am J Hum Genet ; 110(2): 314-325, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36610401

ABSTRACT

Admixture estimation plays a crucial role in ancestry inference and genome-wide association studies (GWASs). Computer programs such as ADMIXTURE and STRUCTURE are commonly employed to estimate the admixture proportions of sample individuals. However, these programs can be overwhelmed by the computational burdens imposed by the 105 to 106 samples and millions of markers commonly found in modern biobanks. An attractive strategy is to run these programs on a set of ancestry-informative SNP markers (AIMs) that exhibit substantially different frequencies across populations. Unfortunately, existing methods for identifying AIMs require knowing ancestry labels for a subset of the sample. This supervised learning approach creates a chicken and the egg scenario. In this paper, we present an unsupervised, scalable framework that seamlessly carries out AIM selection and likelihood-based estimation of admixture proportions. Our simulated and real data examples show that this approach is scalable to modern biobank datasets. OpenADMIXTURE, our Julia implementation of the method, is open source and available for free.


Subject(s)
Biological Specimen Banks , Genome-Wide Association Study , Humans , Genome-Wide Association Study/methods , Likelihood Functions , Population Groups , Software , Genetics, Population
3.
Endocr Relat Cancer ; 30(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-36705562

ABSTRACT

Insulin resistance (IR) is a well-established risk factor for breast cancer (BC) development in African American (AA) postmenopausal women. While obesity and IR are more prevalent in AA than in white women, they are under-represented in genome-wide studies for systemic regulation of IR. By examining 780 genome-wide IR single-nucleotide polymorphisms (SNPs) available in our data, we tested 4689 AA women in a Random Survival Forest framework. With 37 BC-associated lifestyle factors, we conducted a gene-environment interaction analysis to estimate risk prediction for BC with the most influential genetic and behavioral factors and evaluated their combined and joint effects on BC risk. By accounting for variations of individual SNPs in BC in the prediction model, we detected four fasting glucose-associated SNPs in PCSK1, SPC25, ADCY5, and MTNR1B and three lifestyle factors (smoking, oral contraceptive use, and age at menopause) as the most predictive markers for BC risk. Our joint analysis of risk genotypes and lifestyle with smoking revealed a synergistic effect on the increased risk of BC, particularly estrogen/progesterone positive (ER/PR+) BC, in a gene-lifestyle dose-dependent manner. The joint effect of smoking was more substantial in women with prolonged exposure to cigarette smoking and female hormones. The top genome-wide association-SNPs associated with metabolic biomarkers in combination with lifestyles synergistically increase the predictability of invasive ER/PR+ BC risk among AA women. Our findings highlight generically targeted preventive interventions for women who carry particular risk genotypes and lifestyles.


Subject(s)
Breast Neoplasms , Insulin Resistance , Female , Humans , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Black or African American/genetics , Smoking , Risk Factors , Insulin Resistance/genetics , Glucose , Polymorphism, Single Nucleotide
4.
Front Oncol ; 11: 760243, 2021.
Article in English | MEDLINE | ID: mdl-34692549

ABSTRACT

BACKGROUND: Disparities in cancer genomic science exist among racial/ethnic minorities. Particularly, African American (AA) and Hispanic/Latino American (HA) women, the 2 largest minorities, are underrepresented in genetic/genome-wide studies for cancers and their risk factors. We conducted on AA and HA postmenopausal women a genomic study for insulin resistance (IR), the main biologic mechanism underlying colorectal cancer (CRC) carcinogenesis owing to obesity. METHODS: With 780 genome-wide IR-specific single-nucleotide polymorphisms (SNPs) among 4,692 AA and 1,986 HA women, we constructed a CRC-risk prediction model. Along with these SNPs, we incorporated CRC-associated lifestyles in the model of each group and detected the topmost influential genetic and lifestyle factors. Further, we estimated the attributable risk of the topmost risk factors shared by the groups to explore potential factors that differentiate CRC risk between these groups. RESULTS: In both groups, we detected IR-SNPs in PCSK1 (in AA) and IFT172, GCKR, and NRBP1 (in HA) and risk lifestyles, including long lifetime exposures to cigarette smoking and endogenous female hormones and daily intake of polyunsaturated fatty acids (PFA), as the topmost predictive variables for CRC risk. Combinations of those top genetic- and lifestyle-markers synergistically increased CRC risk. Of those risk factors, dietary PFA intake and long lifetime exposure to female hormones may play a key role in mediating racial disparity of CRC incidence between AA and HA women. CONCLUSIONS: Our results may improve CRC risk prediction performance in those medically/scientifically underrepresented groups and lead to the development of genetically informed interventions for cancer prevention and therapeutic effort, thus contributing to reduced cancer disparities in those minority subpopulations.

5.
Biomolecules ; 11(9)2021 09 18.
Article in English | MEDLINE | ID: mdl-34572592

ABSTRACT

As key inflammatory biomarkers C-reactive protein (CRP) and interleukin-6 (IL6) play an important role in the pathogenesis of non-inflammatory diseases, including specific cancers, such as breast cancer (BC). Previous genome-wide association studies (GWASs) have neither explained the large proportion of genetic heritability nor provided comprehensive understanding of the underlying regulatory mechanisms. We adopted an integrative genomic network approach by incorporating our previous GWAS data for CRP and IL6 with multi-omics datasets, such as whole-blood expression quantitative loci, molecular biologic pathways, and gene regulatory networks to capture the full range of genetic functionalities associated with CRP/IL6 and tissue-specific key drivers (KDs) in gene subnetworks. We applied another systematic genomics approach for BC development to detect shared gene sets in enriched subnetworks across BC and CRP/IL6. We detected the topmost significant common pathways across CRP/IL6 (e.g., immune regulatory; chemokines and their receptors; interferon γ, JAK-STAT, and ERBB4 signaling), several of which overlapped with BC pathways. Further, in gene-gene interaction networks enriched by those topmost pathways, we identified KDs-both well-established (e.g., JAK1/2/3, STAT3) and novel (e.g., CXCR3, CD3D, CD3G, STAT6)-in a tissue-specific manner, for mechanisms shared in regulating CRP/IL6 and BC risk. Our study may provide robust, comprehensive insights into the mechanisms of CRP/IL6 regulation and highlight potential novel genetic targets as preventive and therapeutic strategies for associated disorders, such as BC.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Gene Regulatory Networks , Genomics , Inflammation/genetics , Signal Transduction/genetics , Biomarkers, Tumor/metabolism , C-Reactive Protein/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Female , Humans , Interleukin-6/metabolism , Liver/metabolism , Organ Specificity/genetics , Phenotype , Protein Interaction Maps/genetics
6.
Bioinformatics ; 37(24): 4756-4763, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34289008

ABSTRACT

MOTIVATION: Current methods for genotype imputation and phasing exploit the volume of data in haplotype reference panels and rely on hidden Markov models (HMMs). Existing programs all have essentially the same imputation accuracy, are computationally intensive and generally require prephasing the typed markers. RESULTS: We introduce a novel data-mining method for genotype imputation and phasing that substitutes highly efficient linear algebra routines for HMM calculations. This strategy, embodied in our Julia program MendelImpute.jl, avoids explicit assumptions about recombination and population structure while delivering similar prediction accuracy, better memory usage and an order of magnitude or better run-times compared to the fastest competing method. MendelImpute operates on both dosage data and unphased genotype data and simultaneously imputes missing genotypes and phase at both the typed and untyped SNPs (single nucleotide polymorphisms). Finally, MendelImpute naturally extends to global and local ancestry estimation and lends itself to new strategies for data compression and hence faster data transport and sharing. AVAILABILITY AND IMPLEMENTATION: Software, documentation and scripts to reproduce our results are available from https://github.com/OpenMendel/MendelImpute.jl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Data Compression , Software , Genotype , Haplotypes , Polymorphism, Single Nucleotide
7.
Am J Cancer Res ; 11(4): 1733-1753, 2021.
Article in English | MEDLINE | ID: mdl-33948386

ABSTRACT

Systemic inflammation-related etiologic pathways via inflammatory cytokines in the development of colorectal cancer (CRC) have not been convincingly determined and may be confounded by lifestyle factors or reverse causality. We investigated the genetically predicted C-reactive protein (CRP) phenotype in the potential causal pathway of primary CRC risk in postmenopausal women in a Mendelian randomization (MR) framework. We employed individual-level data of the Women's Health Initiative Database for Genotypes and Phenotypes Study, which consists of 5 genome-wide association (GWA) studies, including 10,142 women, 737 of whom developed primary CRC. We examined 61 GWA single-nucleotide polymorphisms (SNPs) associated with CRP by using weighted/penalized MR weighted-medians and MR gene-environment interactions that allow some relaxation of the strict variable requirements and attenuate the heterogeneous estimates of outlying SNPs. In lifestyle-stratification analyses, genetically determined CRP exhibited its effects on the decreased CRC risk in non-viscerally obese and high-fat diet subgroups. In contrast, genetically driven CRP was associated with an increased risk for CRC in women who smoked ≥ 15 cigarettes/day, with significant interaction of the gene-smoking relationship. Further, a substantially increased risk of CRC induced by CRP was observed in relatively short-term users (< 5 years) of estrogen (E)-only and also longer-term users (5 to > 10 years) of E plus progestin. Our findings may provide novel evidence on immune-related etiologic pathways connected to CRC risk and suggest the possible use of CRP as a CRC-predictive biomarker in women with particular behaviors and CRP marker-informed interventions to reduce CRC risk.

8.
BMC Bioinformatics ; 22(1): 228, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33941078

ABSTRACT

BACKGROUND: Statistical geneticists employ simulation to estimate the power of proposed studies, test new analysis tools, and evaluate properties of causal models. Although there are existing trait simulators, there is ample room for modernization. For example, most phenotype simulators are limited to Gaussian traits or traits transformable to normality, while ignoring qualitative traits and realistic, non-normal trait distributions. Also, modern computer languages, such as Julia, that accommodate parallelization and cloud-based computing are now mainstream but rarely used in older applications. To meet the challenges of contemporary big studies, it is important for geneticists to adopt new computational tools. RESULTS: We present TraitSimulation, an open-source Julia package that makes it trivial to quickly simulate phenotypes under a variety of genetic architectures. This package is integrated into our OpenMendel suite for easy downstream analyses. Julia was purpose-built for scientific programming and provides tremendous speed and memory efficiency, easy access to multi-CPU and GPU hardware, and to distributed and cloud-based parallelization. TraitSimulation is designed to encourage flexible trait simulation, including via the standard devices of applied statistics, generalized linear models (GLMs) and generalized linear mixed models (GLMMs). TraitSimulation also accommodates many study designs: unrelateds, sibships, pedigrees, or a mixture of all three. (Of course, for data with pedigrees or cryptic relationships, the simulation process must include the genetic dependencies among the individuals.) We consider an assortment of trait models and study designs to illustrate integrated simulation and analysis pipelines. Step-by-step instructions for these analyses are available in our electronic Jupyter notebooks on Github. These interactive notebooks are ideal for reproducible research. CONCLUSION: The TraitSimulation package has three main advantages. (1) It leverages the computational efficiency and ease of use of Julia to provide extremely fast, straightforward simulation of even the most complex genetic models, including GLMs and GLMMs. (2) It can be operated entirely within, but is not limited to, the integrated analysis pipeline of OpenMendel. And finally (3), by allowing a wider range of more realistic phenotype models, TraitSimulation brings power calculations and diagnostic tools closer to what investigators might see in real-world analyses.


Subject(s)
Cloud Computing , Genetic Testing , Aged , Computer Simulation , Humans , Pedigree , Phenotype
9.
Sci Rep ; 11(1): 1058, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441805

ABSTRACT

Molecular and genetic immune-related pathways connected to breast cancer and lifestyles in postmenopausal women are not fully characterized. In this study, we explored the role of pro-inflammatory cytokines such as C-reactive protein (CRP) and interleukin-6 (IL-6) in those pathways at the genome-wide level. With single-nucleotide polymorphisms (SNPs) in the biomarkers and lifestyles together, we further constructed risk profiles to improve predictability for breast cancer. Our earlier genome-wide association gene-environment interaction study used large cohort data from the Women's Health Initiative Database for Genotypes and Phenotypes Study and identified 88 SNPs associated with CRP and IL-6. For this study, we added an additional 68 SNPs from previous GWA studies, and together with 48 selected lifestyles, evaluated for the association with breast cancer risk via a 2-stage multimodal random survival forest and generalized multifactor dimensionality reduction methods. Overall and in obesity strata (by body mass index, waist, waist-to-hip ratio, exercise, and dietary fat intake), we identified the most predictive genetic and lifestyle variables. Two SNPs (SALL1 rs10521222 and HLA-DQA1 rs9271608) and lifestyles, including alcohol intake, lifetime cumulative exposure to estrogen, and overall and visceral obesity, are the most common and strongest predictive markers for breast cancer across the analyses. The risk profile that combined those variables presented their synergistic effect on the increased breast cancer risk in a gene-lifestyle dose-dependent manner. Our study may contribute to improved predictability for breast cancer and suggest potential interventions for the women with the risk genotypes and lifestyles to reduce their breast cancer risk.


Subject(s)
Alcohol Drinking/adverse effects , Breast Neoplasms/etiology , C-Reactive Protein/genetics , Estrogens/adverse effects , Interleukin-6/genetics , Aged , Breast Neoplasms/genetics , Estrogens/administration & dosage , Female , Gene-Environment Interaction , Genome-Wide Association Study , Humans , Inflammation/complications , Life Style , Middle Aged , Obesity/complications , Polymorphism, Single Nucleotide/genetics
10.
Cancer Prev Res (Phila) ; 14(1): 41-54, 2021 01.
Article in English | MEDLINE | ID: mdl-32928877

ABSTRACT

Immune-related etiologic pathways to influence invasive breast cancer risk may interact with lifestyle factors, but the interrelated molecular genetic pathways are incompletely characterized. We used data from the Women's Health Initiative Database for Genotypes and Phenotypes Study including 16,088 postmenopausal women, a population highly susceptible to inflammation, obesity, and increased risk for breast cancer. With 21,784,812 common autosomal single-nucleotide polymorphisms (SNP), we conducted a genome-wide association (GWA) gene-environment interaction (G × E) analysis in six independent GWA Studies for proinflammatory cytokines [IL6 and C-reactive protein (CRP)] and their gene-lifestyle interactions. Subsequently, we tested for the association of the GWA SNPs with breast cancer risk. In women overall and stratified by obesity status (body mass index, waist circumference, and waist-to-hip ratio) and obesity-related lifestyle factors (exercise and high-fat diet), 88 GWA SNPs in 10 loci were associated with proinflammatory cytokines: 3 associated with IL6 (1 index SNP in MAPK1 and 1 independent SNP in DEC1); 85 with CRP (3 index SNPs in CRPP1, CRP, RP11-419N10.5, HNF1A-AS1, HNF1A, and C1q2orf43; and two independent SNPs in APOE and APOC1). Of those, 27 in HNF1A-AS1, HNF1A, and C1q2orf43 displayed significantly increased risk for breast cancer. We found a number of novel top markers for CRP and IL6, which interacted with obesity factors. A substantial proportion of those SNPs' susceptibility influenced breast cancer risk. Our findings may contribute to better understanding of genetic associations between pro-inflammation and cancer and suggest intervention strategies for women who carry the risk genotypes, reducing breast cancer risk. PREVENTION RELEVANCE: The top GWA-SNPs associated with pro-inflammatory biomarkers have implications for breast carcinogenesis by interacting with obesity factors. Our findings may suggest interventions for women who carry the inflammatory-risk genotypes to reduce breast cancer risk.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/epidemiology , Cytokines/genetics , Gene-Environment Interaction , Obesity/epidemiology , Aged , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Cytokines/metabolism , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Life Style , Middle Aged , Obesity/immunology , Obesity/metabolism , Polymorphism, Single Nucleotide , Postmenopause , Risk Factors , Signal Transduction/immunology
11.
Laryngoscope Investig Otolaryngol ; 5(6): 1217-1226, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33364414

ABSTRACT

OBJECTIVES: The study systematically reviewed the existing literature on the management of autoimmune inner ear disease (AIED). STUDY DESIGN: Systematic review. METHODS: We performed a literature search of Embase, NCBI, Cochrane, and Web of Science databases from April 1990 to April 2020. Inclusion criteria included studies that were retrospective or prospective in nature evaluating the treatment of AIED with audiometric data measuring hearing outcomes during treatment. Hearing improvement was the primary study outcome and improvement in vestibular symptoms was the secondary study outcome. RESULTS: Sixteen of 412 candidate articles were included in our study. Systemic steroid treatment is most commonly described. Alternative treatment modalities included intratympanic steroid treatment, methotrexate, cyclophosphamide, azathioprine, infliximab, etanercept, adalimumab, golimumab, methylprednisolone, rituximab, and anakinra. CONCLUSION: Systemic corticosteroids are the first line treatment of AIED. Intratympanic steroids are a potential adjuvant or alternative treatment for patients who cannot tolerate or become refractory to steroid treatment. Steroid nonresponders may benefit from biologic therapy. Alternative treatment modalities including nonsteroidal immunosuppressants and biologics have been studied in small cohorts of patients with varying results. Prospective studies investigating the efficacy of biologic and nonsteroidal therapy are warranted. LEVEL OF EVIDENCE: 2.

12.
Clin Immunol ; 221: 108602, 2020 12.
Article in English | MEDLINE | ID: mdl-33007439

ABSTRACT

OBJECTIVE: This study performed an integrated analysis of the cellular and transcriptional differences in peripheral immune cells between patients with Systemic Lupus Erythematosus (SLE) and healthy controls (HC). METHODS: Peripheral blood was analyzed using standardized flow cytometry panels. Transcriptional analysis of CD4+ T cells was performed by microarrays and Nanostring assays. RESULTS: SLE CD4+ T cells showed an increased expression of oxidative phosphorylation and immunoregulatory genes. SLE patients presented higher frequencies of activated CD38+HLA-DR+ T cells than HC. Hierarchical clustering identified a group of SLE patients among which African Americans were overrepresented, with highly activated T cells, and higher frequencies of Th1, Tfh, and plasmablast cells. T cell activation was positively correlated with metabolic gene expression in SLE patients but not in HC. CONCLUSIONS: SLE subjects presenting with activated T cells and a hyperactive metabolic signature may represent an opportunity to correct aberrant immune activation through targeted metabolic inhibitors.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Lupus Erythematosus, Systemic/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Female , Gene Expression , Humans , Immunophenotyping , Lupus Erythematosus, Systemic/genetics , Middle Aged , Young Adult
13.
Am J Cancer Res ; 10(9): 2955-2976, 2020.
Article in English | MEDLINE | ID: mdl-33042629

ABSTRACT

Immune-related molecular and genetic pathways that are connected to colorectal cancer (CRC) and lifestyles in postmenopausal women are incompletely characterized. In this study, we examined the role of pro-inflammatory biomarkers such as C-reactive protein (CRP) and interleukin-6 (IL-6) in those pathways. Through selection of the best predictive single-nucleotide polymorphisms (SNPs) and lifestyles, our goal was to improve the prediction accuracy and ability for CRC risk. Using large cohort data of postmenopausal women from the Women's Health Initiative Database for Genotypes and Phenotypes Study, we previously conducted a genome-wide association (GWA) for a CRP and IL-6 gene-behavioral interaction study. For the present study, we added GWA-SNPs from outside GWA studies, resulting in a total of 152 SNPs. Together with 41 selected lifestyles, we performed a 2-stage multimodal random survival forest analysis with generalized multifactor dimensionality reduction approach to construct CRC risk profiles. Overall and in obesity strata (by body mass index, waist circumference, waist-to-hip ratio, exercise, and dietary fat intake), we identified the best predictive genetic markers in inflammatory cytokines and lifestyles. Across the strata, 2 SNPs (ONECUT2 rs4092465 and HNF4A rs1800961) and 1 lifestyle factor (relatively short-term past use of oral contraceptives) were the most common and strongest predictive markers for CRC risk. The risk profile that combined those variables exhibited synergistically increased risk for CRC; this pattern appeared more strongly in obese and inactive subgroups. Our results may contribute to improved predictability for CRC and suggest genetically targeted lifestyle interventions for women carrying the inflammatory-risk genotypes, reducing CRC risk.

14.
Front Oncol ; 10: 1005, 2020.
Article in English | MEDLINE | ID: mdl-32850306

ABSTRACT

Background: The roles of obesity-related biomarkers and their molecular pathways in the development of postmenopausal colorectal cancer (CRC) have been inconclusive. We examined insulin resistance (IR) as a major hormonal pathway mediating the association between obesity and CRC risk in a Mendelian randomization (MR) framework. Methods: We performed MR analysis using individual-level data of 11,078 non-Hispanic white postmenopausal women from our earlier genome-wide association study. We identified four independent single-nucleotide polymorphisms associated with fasting glucose (FG), three with fasting insulin (FI), and six with homeostatic model assessment-IR (HOMA-IR), which were not associated with obesity. We estimated hazard ratios (HRs) for CRC by adjusting for potential confounding factors plus genetic principal components. Results: Overall, we observed no direct association between combined 13 IR genetic instruments and CRC risk (HR = 0.96, 95% confidence interval [CI]: 0.78-1.17). In phenotypic analysis, genetically raised HOMA-IR exhibited its effects on the increased risk and FG and FI on the reduced risk for CRC, but with a lack of statistical power. Subgroup analyses by physical activity level and dietary fat intake with combined phenotypes showed that genetically determined IR was associated with reduced CRC risk in both physical activity-stratified (single contributor: MTRR rs722025; HR = 0.12, 95% CI: 0.02-0.62) and high-fat diet subgroups (main contributor: G6PC2 rs560887; HR = 0.59, 95% CI: 0.37-0.94). Conclusions: Complex evidence was observed for a potential causal association between IR and CRC risk. Our findings may provide an additional value of intervention trials to lower IR and reduce CRC risk.

15.
Gigascience ; 9(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32491161

ABSTRACT

BACKGROUND: Consecutive testing of single nucleotide polymorphisms (SNPs) is usually employed to identify genetic variants associated with complex traits. Ideally one should model all covariates in unison, but most existing analysis methods for genome-wide association studies (GWAS) perform only univariate regression. RESULTS: We extend and efficiently implement iterative hard thresholding (IHT) for multiple regression, treating all SNPs simultaneously. Our extensions accommodate generalized linear models, prior information on genetic variants, and grouping of variants. In our simulations, IHT recovers up to 30% more true predictors than SNP-by-SNP association testing and exhibits a 2-3 orders of magnitude decrease in false-positive rates compared with lasso regression. We also test IHT on the UK Biobank hypertension phenotypes and the Northern Finland Birth Cohort of 1966 cardiovascular phenotypes. We find that IHT scales to the large datasets of contemporary human genetics and recovers the plausible genetic variants identified by previous studies. CONCLUSIONS: Our real data analysis and simulation studies suggest that IHT can (i) recover highly correlated predictors, (ii) avoid over-fitting, (iii) deliver better true-positive and false-positive rates than either marginal testing or lasso regression, (iv) recover unbiased regression coefficients, (v) exploit prior information and group-sparsity, and (vi) be used with biobank-sized datasets. Although these advances are studied for genome-wide association studies inference, our extensions are pertinent to other regression problems with large numbers of predictors.


Subject(s)
Computational Biology/methods , Genome-Wide Association Study/methods , Linear Models , Algorithms , Genetic Predisposition to Disease , Humans , Phenotype , Polymorphism, Single Nucleotide , Reproducibility of Results
16.
Front Oncol ; 10: 630994, 2020.
Article in English | MEDLINE | ID: mdl-33614510

ABSTRACT

BACKGROUND: Immune-related etiologic pathways that influence breast cancer risk are incompletely understood and may be confounded by lifestyles or reverse causality. Using a Mendelian randomization (MR) approach, we investigated the potential causal relationship between genetically elevated C-reactive protein (CRP) concentrations and primary invasive breast cancer risk in postmenopausal women. METHODS: We used individual-level data obtained from 10,179 women, including 537 who developed breast cancer, from the Women's Health Initiative Database for Genotypes and Phenotypes Study, which consists of five genome-wide association (GWA) studies. We examined 61 GWA single-nucleotide polymorphisms (SNPs) previously associated with CRP. We employed weighted/penalized weighted-medians and MR gene-environment interactions that allow instruments' invalidity to some extent and attenuate the heterogeneous estimates of outlying SNPs. RESULTS: In lifestyle-stratification analyses, genetically elevated CRP decreased risk for breast cancer in exogenous estrogen-only, estrogen + progestin, and past oral contraceptive (OC) users, but only among relatively short-term users (<5 years). Estrogen-only users for ≥5 years had more profound CRP-decreased breast cancer risk in dose-response fashion, whereas past OC users for ≥5 years had CRP-increased cancer risk. Also, genetically predicted CRP was strongly associated with increased risk for hormone-receptor positive or human epidermal growth factor receptor-2 negative breast cancer. CONCLUSIONS: Our findings may provide novel evidence on the immune-related molecular pathways linking to breast cancer risk and suggest potential clinical use of CRP to predict the specific cancer subtypes. Our findings suggest potential interventions targeting CRP-inflammatory markers to reduce breast cancer risk.

17.
Hum Genet ; 139(1): 61-71, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30915546

ABSTRACT

Statistical methods for genome-wide association studies (GWAS) continue to improve. However, the increasing volume and variety of genetic and genomic data make computational speed and ease of data manipulation mandatory in future software. In our view, a collaborative effort of statistical geneticists is required to develop open source software targeted to genetic epidemiology. Our attempt to meet this need is called the OPENMENDEL project (https://openmendel.github.io). It aims to (1) enable interactive and reproducible analyses with informative intermediate results, (2) scale to big data analytics, (3) embrace parallel and distributed computing, (4) adapt to rapid hardware evolution, (5) allow cloud computing, (6) allow integration of varied genetic data types, and (7) foster easy communication between clinicians, geneticists, statisticians, and computer scientists. This article reviews and makes recommendations to the genetic epidemiology community in the context of the OPENMENDEL project.


Subject(s)
Computational Biology/methods , Genome, Human , Genome-Wide Association Study , Models, Statistical , Programming Languages , Algorithms , Humans , Polymorphism, Single Nucleotide , Software
18.
Cancer Prev Res (Phila) ; 12(12): 877-890, 2019 12.
Article in English | MEDLINE | ID: mdl-31554631

ABSTRACT

Molecular and genetic pathways of insulin resistance (IR) connecting colorectal cancer and obesity factors in postmenopausal women remain inconclusive. We examined the IR pathways on both genetic and phenotypic perspectives at the genome-wide level. We further constructed colorectal cancer risk profiles with the most predictive IR SNPs and lifestyle factors. In our earlier genome-wide association gene-environmental interaction study, we used data from a large cohort of postmenopausal women in the Women's Health Initiative Database for Genotypes and Phenotypes Study and identified 58 SNPs in relation to IR phenotypes. In this study, we evaluated the identified IR SNPs and selected 34 lifestyles for their association with colorectal cancer risk in a total of 11,078 women (including 736 women with colorectal cancer) using a 2-stage multimodal random survival forest analysis. In overall and subgroup (defined via body mass index, exercise, and dietary-fat intake) analyses, we identified 2 SNPs (LINC00460 rs1725459 and MTRR rs722025) and lifetime cumulative exposure to estrogen (oral contraceptive use) and cigarette smoking as the most common and strongest predictive markers for colorectal cancer risk across the analyses. The combinations of genetic and lifestyle factors had much greater impact on colorectal cancer risk than any individual risk factors, and a possible synergism existed to increase colorectal cancer risk in a gene-behavior dose-dependent manner. Our findings may inform research on the role of IR in the etiology of colorectal cancer and contribute to more accurate prediction of colorectal cancer risk, suggesting potential intervention strategies for women with specific genotypes and lifestyles to reduce their colorectal cancer risk.


Subject(s)
Colorectal Neoplasms/epidemiology , Gene-Environment Interaction , Genetic Predisposition to Disease , Insulin Resistance/genetics , Life Style , Aged , Aged, 80 and over , Colorectal Neoplasms/genetics , Colorectal Neoplasms/prevention & control , Female , Ferredoxin-NADP Reductase/genetics , Genome-Wide Association Study , Humans , Middle Aged , Polymorphism, Single Nucleotide , Postmenopause , RNA, Long Noncoding/genetics , Risk Factors
19.
J Immunol ; 203(2): 338-348, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31160534

ABSTRACT

In systemic lupus erythematosus, defective clearance of apoptotic debris and activation of innate cells result in a chronically activated type 1 IFN response, which can be measured in PBMCs of most patients. Metformin, a widely used prescription drug for Type 2 diabetes, has a therapeutic effect in several mouse models of lupus through mechanisms involving inhibition of oxidative phosphorylation and a decrease in CD4+ T cell activation. In this study, we report that in CD4+ T cells from human healthy controls and human systemic lupus erythematosus patients, metformin inhibits the transcription of IFN-stimulated genes (ISGs) after IFN-α treatment. Accordingly, metformin inhibited the phosphorylation of pSTAT1 (Y701) and its binding to IFN-stimulated response elements that control ISG expression. These effects were independent of AMPK activation or mTORC1 inhibition but were replicated using inhibitors of the electron transport chain respiratory complexes I, III, and IV. This indicates that mitochondrial respiration is required for ISG expression in CD4+ T cells and provides a novel mechanism by which metformin may exert a therapeutic effect in autoimmune diseases.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Hypoglycemic Agents/therapeutic use , Interferon Type I/antagonists & inhibitors , Metformin/therapeutic use , Adult , Aged , Diabetes Mellitus, Type 2/drug therapy , Female , Humans , Leukocytes, Mononuclear/drug effects , Lupus Erythematosus, Systemic/immunology , Lymphocyte Activation/drug effects , Male , Middle Aged , Oxidative Phosphorylation/drug effects , Signal Transduction/drug effects , Young Adult
20.
PLoS One ; 14(6): e0218917, 2019.
Article in English | MEDLINE | ID: mdl-31246991

ABSTRACT

PURPOSE: The role of insulin resistance (IR) in developing postmenopausal breast cancer has not been thoroughly resolved and may be confounded by lifestyle factors such as obesity. We examined whether genetically determined IR is causally associated with breast cancer risk. METHODS: We conducted Mendelian randomization (MR) analyses using individual-level data from our previous meta-analysis of a genome-wide association study (GWAS) (n = 11,109 non-Hispanic white postmenopausal women). Four single-nucleotide polymorphisms were associated with fasting glucose (FG), 2 with fasting insulin (FI), and 6 with homeostatic model assessment-IR (HOMA-IR) but were not associated with obesity. We used this GWAS to employ hazard ratios (HRs) for breast cancer risk by adjusting for potential confounding factors. RESULTS: No direct association was observed between comprising 12 IR genetic instruments and breast cancer risk (HR = 0.93, 95% CI: 0.76-1.14). In phenotype-specific analysis, genetically elevated FG was associated with reduced risk for breast cancer (main contributor of this MR-effect estimate: G6PC2 rs13431652; HR = 0.59, 95% CI: 0.35-0.99). Genetically driven FI and HOMA-IR were not significantly associated. Stratification analyses by body mass index, exercise, and dietary fat intake with combined phenotypes showed that genetically elevated IR was associated with greater breast cancer risk in overall obesity and inactive subgroups (single contributor: MTRR/LOC729506 rs13188458; HR = 2.21, 95% CI: 1.03-4.75). CONCLUSIONS: We found complex evidence for causal association between IR and risk of breast cancer, which may support the potential value of intervention trials to lower IR and reduce breast cancer risk.


Subject(s)
Breast Neoplasms/genetics , Gene-Environment Interaction , Insulin Resistance/genetics , Breast Neoplasms/etiology , Female , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Obesity/complications , Polymorphism, Single Nucleotide , Postmenopause , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...