Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Evol ; 10(1): veae034, 2024.
Article in English | MEDLINE | ID: mdl-38859985

ABSTRACT

Seasonal influenza virus predominantly evolves through antigenic drift, marked by the accumulation of mutations at antigenic sites. Because of antigenic drift, influenza vaccines are frequently updated, though their efficacy may still be limited due to strain mismatches. Despite the high levels of viral diversity observed across populations, most human studies reveal limited intrahost diversity, leaving the origin of population-level viral diversity unclear. Previous studies show host characteristics, such as immunity, might affect within-host viral evolution. Here we investigate influenza A viral diversity in children aged between 6 months and 18 years. Influenza virus evolution in children is less well characterized than in adults, yet may be associated with higher levels of viral diversity given the lower level of pre-existing immunity and longer durations of infection in children. We obtained influenza isolates from banked influenza A-positive nasopharyngeal swabs collected at the Children's Hospital of Philadelphia during the 2017-18 influenza season. Using next-generation sequencing, we evaluated the population of influenza viruses present in each sample. We characterized within-host viral diversity using the number and frequency of intrahost single-nucleotide variants (iSNVs) detected in each sample. We related viral diversity to clinical metadata, including subjects' age, vaccination status, and comorbid conditions, as well as sample metadata such as virus strain and cycle threshold. Consistent with previous studies, most samples contained low levels of diversity with no clear association between the subjects' age, vaccine status, or health status. Further, there was no enrichment of iSNVs near known antigenic sites. Taken together, these findings are consistent with previous observations that the majority of intrahost influenza virus infection is characterized by low viral diversity without evidence of diversifying selection.

2.
mBio ; 15(3): e0011024, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38364100

ABSTRACT

Prolonged infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in immunocompromised patients provides an opportunity for viral evolution, potentially leading to the generation of new pathogenic variants. To investigate the pathways of viral evolution, we carried out a study on five patients experiencing prolonged SARS-CoV-2 infection (quantitative polymerase chain reaction-positive for 79-203 days) who were immunocompromised due to treatment for lymphoma or solid organ transplantation. For each timepoint analyzed, we generated at least two independent viral genome sequences to assess the heterogeneity and control for sequencing error. Four of the five patients likely had prolonged infection; the fifth apparently experienced a reinfection. The rates of accumulation of substitutions in the viral genome per day were higher in hospitalized patients with prolonged infection than those estimated for the community background. The spike coding region accumulated a significantly greater number of unique mutations than other viral coding regions, and the mutation density was higher. Two patients were treated with monoclonal antibodies (bebtelovimab and sotrovimab); by the next sampled timepoint, each virus population showed substitutions associated with monoclonal antibody resistance as the dominant forms (spike K444N and spike E340D). All patients received remdesivir, but remdesivir-resistant substitutions were not detected. These data thus help elucidate the trends of emergence, evolution, and selection of mutational variants within long-term infected immunocompromised individuals. IMPORTANCE: SARS-CoV-2 is responsible for a global pandemic, driven in part by the emergence of new viral variants. Where do these new variants come from? One model is that long-term viral persistence in infected individuals allows for viral evolution in response to host pressures, resulting in viruses more likely to replicate efficiently in humans. In this study, we characterize replication in several hospitalized and long-term infected individuals, documenting efficient pathways of viral evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Monoclonal , Genome, Viral , Immunocompromised Host
4.
J Virol ; 91(14)2017 07 15.
Article in English | MEDLINE | ID: mdl-28468874

ABSTRACT

The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors.IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent advances in sequencing technology have enabled bottleneck size estimation from pathogen genetic data, although there is not yet a consistency in the statistical methods used. Here, we introduce a new approach to infer the bottleneck size that accounts for variant identification protocols and noise during pathogen replication. We show that failing to account for these factors leads to an underestimation of bottleneck sizes. We apply this method to an existing data set of human influenza virus infections, showing that transmission is governed by a loose, but highly variable, transmission bottleneck whose size is positively associated with the severity of infection of the donor. Beyond advancing our understanding of influenza virus transmission, we hope that this work will provide a standardized statistical approach for bottleneck size estimation for viral pathogens.


Subject(s)
Genetic Variation , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/transmission , Influenza, Human/virology , High-Throughput Nucleotide Sequencing , Humans , Influenza A virus/isolation & purification
5.
PLoS Pathog ; 13(2): e1006203, 2017 02.
Article in English | MEDLINE | ID: mdl-28170438

ABSTRACT

We characterise the evolutionary dynamics of influenza infection described by viral sequence data collected from two challenge studies conducted in human hosts. Viral sequence data were collected at regular intervals from infected hosts. Changes in the sequence data observed across time show that the within-host evolution of the virus was driven by the reversion of variants acquired during previous passaging of the virus. Treatment of some patients with oseltamivir on the first day of infection did not lead to the emergence of drug resistance variants in patients. Using an evolutionary model, we inferred the effective rate of reassortment between viral segments, measuring the extent to which randomly chosen viruses within the host exchange genetic material. We find strong evidence that the rate of effective reassortment is low, such that genetic associations between polymorphic loci in different segments are preserved during the course of an infection in a manner not compatible with epistasis. Combining our evidence with that of previous studies we suggest that spatial heterogeneity in the viral population may reduce the extent to which reassortment is observed. Our results do not contradict previous findings of high rates of viral reassortment in vitro and in small animal studies, but indicate that in human hosts the effective rate of reassortment may be substantially more limited.


Subject(s)
Influenza, Human/virology , Models, Genetic , Orthomyxoviridae/genetics , Humans , Selection, Genetic
6.
J Virol ; 90(24): 11247-11258, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27707932

ABSTRACT

Knowledge of influenza virus evolution at the point of transmission and at the intrahost level remains limited, particularly for human hosts. Here, we analyze a unique viral data set of next-generation sequencing (NGS) samples generated from a human influenza challenge study wherein 17 healthy subjects were inoculated with cell- and egg-passaged virus. Nasal wash samples collected from 7 of these subjects were successfully deep sequenced. From these, we characterized changes in the subjects' viral populations during infection and identified differences between the virus in these samples and the viral stock used to inoculate the subjects. We first calculated pairwise genetic distances between the subjects' nasal wash samples, the viral stock, and the influenza virus A/Wisconsin/67/2005 (H3N2) reference strain used to generate the stock virus. These distances revealed that considerable viral evolution occurred at various points in the human challenge study. Further quantitative analyses indicated that (i) the viral stock contained genetic variants that originated and likely were selected for during the passaging process, (ii) direct intranasal inoculation with the viral stock resulted in a selective bottleneck that reduced nonsynonymous genetic diversity in the viral hemagglutinin and nucleoprotein, and (iii) intrahost viral evolution continued over the course of infection. These intrahost evolutionary dynamics were dominated by purifying selection. Our findings indicate that rapid viral evolution can occur during acute influenza infection in otherwise healthy human hosts when the founding population size of the virus is large, as is the case with direct intranasal inoculation. IMPORTANCE: Influenza viruses circulating among humans are known to rapidly evolve over time. However, little is known about how influenza virus evolves across single transmission events and over the course of a single infection. To address these issues, we analyze influenza virus sequences from a human challenge experiment that initiated infection with a cell- and egg-passaged viral stock, which appeared to have adapted during its preparation. We find that the subjects' viral populations differ genetically from the viral stock, with subjects' viral populations having lower representation of the amino-acid-changing variants that arose during viral preparation. We also find that most of the viral evolution occurring over single infections is characterized by further decreases in the frequencies of these amino-acid-changing variants and that only limited intrahost genetic diversification through new mutations is apparent. Our findings indicate that influenza virus populations can undergo rapid genetic changes during acute human infections.


Subject(s)
Genetic Variation , Genome, Viral , Influenza A Virus, H3N2 Subtype/genetics , RNA, Viral/genetics , Animals , Chickens , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Humans , Influenza A Virus, H3N2 Subtype/growth & development , Influenza, Human/virology , Models, Genetic , Selection, Genetic , Zygote/virology
7.
Environ Sci Technol ; 50(11): 5961-71, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27124219

ABSTRACT

The toxicity-testing paradigm has evolved to include high-throughput (HT) methods for addressing the increasing need to screen hundreds to thousands of chemicals rapidly. Approaches that involve in vitro screening assays, in silico predictions of exposure concentrations, and pharmacokinetic (PK) characteristics provide the foundation for HT risk prioritization. Underlying uncertainties in predicted exposure concentrations or PK behaviors can significantly influence the prioritization of chemicals, though the impact of such influences is unclear. In the current study, a framework was developed to incorporate absorbed doses, PK properties, and in vitro dose-response data into a PK/pharmacodynamic (PD) model to allow for placement of chemicals into discrete priority bins. Literature-reported or predicted values for clearance rates and absorbed doses were used in the PK/PD model to evaluate the impact of their uncertainties on chemical prioritization. Scenarios using predicted absorbed doses resulted in a larger number of bin misassignments than those scenarios using predicted clearance rates, when comparing to bin placement using literature-reported values. Sensitivity of parameters on the model output of toxicological activity was examined across possible ranges for those parameters to provide insight into how uncertainty in their predicted values might impact uncertainty in activity.


Subject(s)
Computer Simulation , Toxicity Tests , Humans , Kinetics , Models, Theoretical , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...