Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 103 ( Pt 4): 965-76, 1992 Dec.
Article in English | MEDLINE | ID: mdl-1487507

ABSTRACT

We used video assays to study the dynamic instability behavior of individual microtubules assembled in vitro with purified tau, purified MAP2 or a preparation of unfractionated heat-stable MAPs. Axoneme-nucleated microtubules were assembled from pure tubulin at concentrations between 4 and 9 microM in the presence of MAPs, and observed by video-differential interference contrast microscopy. Microtubules co-assembled with each MAP preparation exhibited the elongation and rapid shortening phases and the abrupt transitions (catastrophe and rescue) characteristic of dynamic instability. Each MAP preparation increased the microtubule elongation rate above that for purified tubulin alone by decreasing the tubulin subunit dissociation rate during elongation. The brain MAPs used in this study reduced the rate of microtubule rapid shortening, but allowed significant loss of polymer during the shortening phase. Purified tau and MAP2 decreased the frequency of catastrophe and increased the frequency of rescue, while the heat-stable MAPs suppressed catastrophe at all but the lowest tubulin concentrations. Thus, each of these MAPs modulates, but does not abolish, dynamic instability behavior of microtubules. We propose a model to explain how MAP2 and tau bind to the microtubule lattice at sites along protofilaments so that the MAPs promote polymerization, but do not significantly block the mechanism of rapid shortening inherent in the tubulin lattice. Rapid shortening, when it occurs, proceeds primarily by the dissociation of short fragments of protofilaments, which contain the bound MAPs.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Nerve Tissue Proteins/metabolism , tau Proteins/metabolism , Animals , Brain Chemistry , Flagella/metabolism , Photomicrography , Sea Urchins , Swine , Video Recording
2.
J Cell Biol ; 107(4): 1437-48, 1988 Oct.
Article in English | MEDLINE | ID: mdl-3170635

ABSTRACT

We have developed video microscopy methods to visualize the assembly and disassembly of individual microtubules at 33-ms intervals. Porcine brain tubulin, free of microtubule-associated proteins, was assembled onto axoneme fragments at 37 degrees C, and the dynamic behavior of the plus and minus ends of microtubules was analyzed for tubulin concentrations between 7 and 15.5 microM. Elongation and rapid shortening were distinctly different phases. At each end, the elongation phase was characterized by a second order association and a substantial first order dissociation reaction. Association rate constants were 8.9 and 4.3 microM-1 s-1 for the plus and minus ends, respectively; and the corresponding dissociation rate constants were 44 and 23 s-1. For both ends, the rate of tubulin dissociation equaled the rate of tubulin association at 5 microM. The rate of rapid shortening was similar at the two ends (plus = 733 s-1; minus = 915 s-1), and did not vary with tubulin concentration. Transitions between phases were abrupt and stochastic. As the tubulin concentration was increased, catastrophe frequency decreased at both ends, and rescue frequency increased dramatically at the minus end. This resulted in fewer rapid shortening phases at higher tubulin concentrations for both ends and shorter rapid shortening phases at the minus end. At each concentration, the frequency of catastrophe was slightly greater at the plus end, and the frequency of rescue was greater at the minus end. Our data demonstrate that microtubules assembled from pure tubulin undergo dynamic instability over a twofold range of tubulin concentrations, and that the dynamic instability of the plus and minus ends of microtubules can be significantly different. Our analysis indicates that this difference could produce treadmilling, and establishes general limits on the effectiveness of length redistribution as a measure of dynamic instability. Our results are consistent with the existence of a GTP cap during elongation, but are not consistent with existing GTP cap models.


Subject(s)
Microtubules/physiology , Tubulin/physiology , Animals , Guanosine Triphosphate/physiology , In Vitro Techniques , Kinetics , Microtubules/ultrastructure , Protein Binding , Swine , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...