Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 54(17): 8598-607, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26267350

ABSTRACT

The ternary transition-metal compound Fe(3-δ)GeTe2 is formed for 0 < δ < 0.3. X-ray diffraction and Mössbauer spectroscopy reveal its layered crystal structure with occasional Fe vacancies in the Fe2 site, whereas no Fe atoms occupy the interlayer space, so that only van der Waals interactions exist between adjacent layers. We explore magnetic behavior and ensuing functional properties of Fe(2.9)GeTe2 via neutron diffraction, thermodynamic and transport measurements, Mössbauer spectroscopy, and electronic structure calculations. Below T(C) = 225 K, Fe(2.9)GeTe2 is ferromagnetically ordered with the magnetic moments of 1.95(5) and 1.56(4) µ(B) at T = 1.5 K, both directed along c, which is the magnetic easy axis. Electronic structure calculations confirm this magnetic structure and reveal a remarkably high easy-axis anisotropy of 4.2 meV/f.u. Mössbauer spectra reveal the magnetic ordering too, although a drastic influence of Fe vacancies on quadrupolar splittings and local magnetic fields has been observed. A moderate magnetocaloric effect with the magnetic entropy change upon the ferromagnetic ordering transition, -ΔS ∼ 1.1 J·kg(-1)·K(-1) at 5 T, is found.

2.
Inorg Chem ; 53(11): 5830-8, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24823990

ABSTRACT

We report the synthesis and characterization of the new bismuth iron selenite oxochloride Bi2Fe(SeO3)2OCl3. The main feature of its crystal structure is the presence of a reasonably isolated set of spin S = 5/2 zigzag chains of corner-sharing FeO6 octahedra decorated with BiO4Cl3, BiO3Cl3, and SeO3 groups. When the temperature is lowered, the magnetization passes through a broad maximum at Tmax ≈ 130 K, which indicates the formation of a magnetic short-range correlation regime. The same behavior is demonstrated by the integral electron spin resonance intensity. The absorption is characterized by the isotropic effective factor g ≈ 2 typical for high-spin Fe(3+) ions. The broadening of ESR absorption lines at low temperatures with the critical exponent ß = 7/4 is consistent with the divergence of the temperature-dependent correlation length expected for the quasi-one-dimensional antiferromagnetic spin chain upon approaching the long-range ordering transition from above. At TN = 13 K, Bi2Fe(SeO3)2OCl3 exhibits a transition into an antiferromagnetically ordered state, evidenced in the magnetization, specific heat, and Mössbauer spectra. At T < TN, the (57)Fe Mössbauer spectra reveal a low saturated value of the hyperfine field Hhf ≈ 44 T, which indicates a quantum spin reduction of spin-only magnetic moment ΔS/S ≈ 20%. The determination of exchange interaction parameters using first-principles calculations validates the quasi-one-dimensional nature of magnetism in this compound.

3.
Chemistry ; 13(18): 5090-9, 2007.
Article in English | MEDLINE | ID: mdl-17385200

ABSTRACT

Sn(20.5)As(22)I(8), a new cationic clathrate, has been prepared by using an ampoule technique. According to the X-ray powder diffraction data, it crystallizes in the face-centered cubic space group F23 or Fm(-)3 with a unit-cell parameter of a=22.1837(4) A. Single-crystal X-ray data allowed solution of the crystal structure in the subcell with a unit-cell parameter of a(0)=11.092(1) A and the space group Pm(-)3n (R=5.7 %). Sn(20.5)As(22)I(8) (or Sn(20.5) square(3.5)As(22)I(8), accounting for the vacancies in the framework) possesses the clathrate-I type crystal structure, with iodine atoms occupying the cages of the cationic framework composed of tin and arsenic atoms. The crystal structure is strongly disordered. The main features are a random distribution of vacancies, and shifts of the tin and arsenic atoms away from their ideal positions. The coordination of the tin atoms has been confirmed by using (119)Sn Mössbauer spectroscopy. Electron diffraction and high-resolution electron microscopy (HREM) analyses have confirmed the presence of the superstructure ordering, which results in a doubling of the unit-cell parameter and a change of the space group from Pm(-)3n to either F23 or Fm(-)3. Analysis of the crystal structure has led to the construction of four ordering models for the superstructure, which have been corroborated by HREM, and has also led to the identification of disordered regions originating from overlap of the different types of ordered domains. Sn(20.5)As(22)I(8) is a diamagnetic semiconductor with an estimated band gap of 0.45 eV; it displays abnormally low thermal conductivity, with the room temperature value being just 0.5 W m(-1) K(-1).

4.
Inorg Chem ; 44(24): 8786-93, 2005 Nov 28.
Article in English | MEDLINE | ID: mdl-16296833

ABSTRACT

Sn19.3Cu4.7As22I8, a new clathrate-I compound with a cationic host framework containing transition metals, has been synthesized, and its crystal structure has been determined. It crystallizes in the cubic space group Pmn with a unit cell parameter a = 11.1736(3) angstroms and Z = 1 (R = 0.031 for 329 independent reflections and 22 variables). Tin, copper, and arsenic form the cationic clathrate framework hosting the guest iodine anions in cages of two different shapes. Sn19.3Cu4.7As22I8 does not contain vacancies in the framework but reveals three partially occupied positions of the metal atoms, leading to the formation of Sn-Sn and Sn-Cu bonds that differ in length. The 119Sn Mössbauer spectrum confirms the local environment of tin atoms. The hyperfine constants obtained from the Mössbauer spectra for different cationic tin clathrates are discussed. Electron diffraction and electron microscopy reveal that the splitting affects the short-range ordering but does not lead to a superstructure. Though containing a transition metal, Sn19.3Cu4.7As22I8 is diamagnetic, and its composition corresponds to the Zintl formalism.

SELECTION OF CITATIONS
SEARCH DETAIL
...