Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Autism Dev Disord ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062243

ABSTRACT

Autism spectrum disorder (ASD) and Developmental Coordination Disorder (DCD) are distinct clinical groups with overlapping motor features. We attempted to (1) differentiate children with ASD from those with DCD, and from those typically developing (TD) (ages 8-17; 18 ASD, 16 DCD, 20 TD) using a 5-min coloring game on a smart tablet and (2) identify neural correlates of these differences. We utilized standardized behavioral motor assessments (e.g. fine motor, gross motor, and balance skills) and video recordings of a smart tablet task to capture any visible motor, behavioral, posture, or engagement differences. We employed machine learning analytics of motor kinematics during a 5-min coloring game on a smart tablet. Imaging data was captured using functional magnetic resonance imaging (fMRI) during action production tasks. While subject-rated motor assessments could not differentiate the two clinical groups, machine learning computational analysis provided good predictive discrimination: between TD and ASD (76% accuracy), TD and DCD (78% accuracy), and ASD and DCD (71% accuracy). Two kinematic markers which strongly drove categorization were significantly correlated with cerebellar activity. Findings demonstrate unique neuromotor patterns between ASD and DCD relate to cerebellar function and present a promising route for computational techniques in early identification. These are promising preliminary results that warrant replication with larger samples.

2.
Article in English | MEDLINE | ID: mdl-35270756

ABSTRACT

Social sciences researchers emphasize that new technologies can overcome the limitations of small and homogenous samples. In research on early language development, which often uses parental reports, taking the testing online might be particularly compelling. Due to logistical limitations, previous studies on bilingual children have explored the language development trajectories in general (e.g., by including few and largely set apart timepoints), or focused on small, homogeneous samples. The present study protocol presents a new, on-going study which uses new technologies to collect longitudinal data continuously from parents of multilingual, bilingual, and monolingual children. Our primary aim is to establish the developmental trajectories in Polish-British English and Polish-Norwegian bilingual children and Polish monolingual children aged 0-3 years with the use of mobile and web-based applications. These tools allow parents to report their children's language development as it progresses, and allow us to characterize children's performance in each language (the age of reaching particular language milestones). The project's novelty rests on its use of mobile technologies to characterize the bilingual and monolingual developmental trajectory from the very first words to broader vocabulary and multiword combinations.


Subject(s)
Mobile Applications , Multilingualism , Child , Humans , Language , Language Development , Language Tests
3.
BMJ Open ; 9(7): e026226, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31315858

ABSTRACT

INTRODUCTION: Recent evidence suggests an underlying movement disruption may be a core component of autism spectrum disorder (ASD) and a new, accessible early biomarker. Mobile smart technologies such as iPads contain inertial movement and touch screen sensors capable of recording subsecond movement patterns during gameplay. A previous pilot study employed machine learning analysis of motor patterns recorded from children 3-5 years old. It identified those with ASD from age-matched and gender-matched controls with 93% accuracy, presenting an attractive assessment method suitable for use in the home, clinic or classroom. METHODS AND ANALYSIS: This is a phase III prospective, diagnostic classification study designed according to the Standards for Reporting Diagnostic Accuracy Studies guidelines. Three cohorts are investigated: children typically developing (TD); children with a clinical diagnosis of ASD and children with a diagnosis of another neurodevelopmental disorder (OND) that is not ASD. The study will be completed in Glasgow, UK and Gothenburg, Sweden. The recruitment target is 760 children (280 TD, 280 ASD and 200 OND). Children play two games on the iPad then a third party data acquisition and analysis algorithm (Play.Care, Harimata) will classify the data as positively or negatively associated with ASD. The results are blind until data collection is complete, when the algorithm's classification will be compared against medical diagnosis. Furthermore, parents of participants in the ASD and OND groups will complete three questionnaires: Strengths and Difficulties Questionnaire; Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations Questionnaire and the Adaptive Behavioural Assessment System-3 or Vineland Adaptive Behavior Scales-II. The primary outcome measure is sensitivity and specificity of Play.Care to differentiate ASD children from TD children. Secondary outcomes measures include the accuracy of Play.Care to differentiate ASD children from OND children. ETHICS AND DISSEMINATION: This study was approved by the West of Scotland Research Ethics Service Committee 3 and the University of Strathclyde Ethics Committee. Results will be disseminated in peer-reviewed publications and at international scientific conferences. TRIAL REGISTRATION NUMBER: NCT03438994; Pre-results.


Subject(s)
Autistic Disorder/diagnosis , Autistic Disorder/physiopathology , Video Games , Autistic Disorder/epidemiology , Child, Preschool , Clinical Trials, Phase III as Topic , Female , Humans , Male , Prospective Studies , Sweden/epidemiology , United Kingdom/epidemiology
4.
Sci Rep ; 7(1): 13863, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29066747

ABSTRACT

The article presents a research study on recognizing therapy progress among children with autism spectrum disorder. The progress is recognized on the basis of behavioural data gathered via five specially designed tablet games. Over 180 distinct parameters are calculated on the basis of raw data delivered via the game flow and tablet sensors - i.e. touch screen, accelerometer and gyroscope. The results obtained confirm the possibility of recognizing progress in particular areas of development. The recognition accuracy exceeds 80%. Moreover, the study identifies a subset of parameters which appear to be better predictors of therapy progress than others. The proposed method - consisting of data recording, parameter calculation formulas and prediction models - might be implemented in a tool to support both therapists and parents of autistic children. Such a tool might be used to monitor the course of the therapy, modify it and report its results.


Subject(s)
Autism Spectrum Disorder/therapy , Computational Biology/methods , Machine Learning , Child , Child, Preschool , Data Collection , Female , Humans , Male , Treatment Outcome
5.
Sci Rep ; 6: 31107, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27553971

ABSTRACT

Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children's motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.


Subject(s)
Autistic Disorder/diagnosis , Autistic Disorder/physiopathology , Diagnosis, Computer-Assisted/methods , Gestures , Psychomotor Performance/physiology , Video Games , Algorithms , Autistic Disorder/psychology , Biomechanical Phenomena , Case-Control Studies , Child , Child, Preschool , Computers, Handheld , Early Diagnosis , Female , Humans , Machine Learning , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...