Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446108

ABSTRACT

Microorganisms inhabiting the human body play an extremely key role in its proper functioning, as well as in the development of the immune system, which, by maintaining the immune balance, allows you to enjoy health. Dysbiosis of the intestinal microbiota, or in the oral cavity or reproductive tract, understood as a change in the number and diversity of all microorganisms inhabiting them, may correlate with the development of many diseases, including endometriosis, as researchers have emphasized. Endometriosis is an inflammatory, estrogen-dependent gynecological condition defined by the growth of endometrial cells outside the uterine cavity. Deregulation of immune homeostasis resulting from microbiological disorders may generate chronic inflammation, thus creating an environment conducive to the increased adhesion and angiogenesis involved in the development of endometriosis. In addition, research in recent years has implicated bacterial contamination and immune activation, reduced gastrointestinal function by cytokines, altered estrogen metabolism and signaling, and abnormal progenitor and stem cell homeostasis, in the pathogenesis of endometriosis. The aim of this review was to present the influence of intestinal, oral and genital microbiota dysbiosis in the metabolic regulation and immunopathogenesis of endometriosis.


Subject(s)
Endometriosis , Microbiota , Female , Humans , Endometriosis/etiology , Dysbiosis/microbiology , Uterus/metabolism , Estrogens/metabolism
2.
Int J Mol Sci ; 23(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35628566

ABSTRACT

The female reproductive tract hosts a specific microbiome, which plays a crucial role in sustaining equilibrium and good health. In the majority of reproductive women, the microbiota (all bacteria, viruses, fungi, and other single-celled organisms within the human body) of the vaginal and cervical microenvironment are dominated by Lactobacillus species, which benefit the host through symbiotic relationships, in comparison to the uterus, fallopian tubes, and ovaries, which may contain a low-biomass microbiome with a diverse mixture of microorganisms. Although disruption to the balance of the microbiota develops, the altered immune and metabolic signaling may cause an impact on diseases such as cancer. These pathophysiological modifications in the gut-uterus axis may spark gynecological cancers. New information displays that gynecological and gastrointestinal tract dysbiosis (disruption of the microbiota homeostasis) can play an active role in the advancement and metastasis of gynecological neoplasms, such as cervical, endometrial, and ovarian cancers. Understanding the relationship between microbiota and endometrial cancer is critical for prognosis, diagnosis, prevention, and the development of innovative treatments. Identifying a specific microbiome may become an effective method for characterization of the specific microbiota involved in endometrial carcinogenesis. The aim of this study was to summarize the current state of knowledge that describes the correlation of microbiota with endometrial cancer with regard to the formation of immunological pathologies.


Subject(s)
Endometrial Neoplasms , Microbiota , Bacteria , Dysbiosis , Endometrium , Female , Humans , Microbiota/physiology , Tumor Microenvironment
3.
Biomolecules ; 11(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-34439871

ABSTRACT

Ovarian cancer is a global problem that affects women of all ages. Due to the lack of effective screening tests and the usually asymptomatic course of the disease in the early stages, the diagnosis is too late, with the result that less than half of the patients diagnosed with ovarian cancer (OC) survive more than five years after their diagnosis. In this study, we examined the expression of TLR2 in the peripheral blood of 50 previously untreated patients with newly diagnosed OC at various stages of the disease using flow cytometry. The studies aimed at demonstrating the usefulness of TLR2 as a biomarker in the advanced stage of ovarian cancer. In this study, we showed that TLR2 expression levels were significantly higher in women with more advanced OC than in women in the control group. Our research sheds light on the prognostic potential of TLR2 in developing new diagnostic approaches and thus in increasing survival in patients with confirmed ovarian cancer.


Subject(s)
Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , Toll-Like Receptor 2/blood , Aged , Biomarkers, Tumor/blood , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/metabolism , Case-Control Studies , Female , Humans , Middle Aged , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/metabolism , Prognosis
4.
Cells ; 9(8)2020 07 30.
Article in English | MEDLINE | ID: mdl-32751735

ABSTRACT

Recent evidence suggests that immunological aspects play a pivotal role in this disorder. Toll-like receptor 2 (TLR2) is crucial in recognizing microbial infections and mediating innate immune response. The objective of our study was to rate with flow cytometry the levels of several subsets of dendritic cells, monocytes, and basic peripheral blood lymphocytes expressing TLR2, aiming at the determination of a possible correlation between the expression of TLR2 and the clinical outcomes of endometriosis in 40 patients and 40 age-matched healthy women. Our study showed the importance of TLR2 expression, mainly on myeloid dendritic cells (mDCs) and B cells in patients with endometriosis. Both mDCs BDCA1+CD19-TLR2+ and B lymphocytes CD19+TLR-2+ proved useful in the differentiation of affected individuals with stages 3-4 of the disease (area under the receiver operating characteristic curve /AUC/ = 0.96, p < 0.0001 for mDCs; AUC = 0.78, p = 0.0001 for B lymphocytes), and those presenting adhesion (AUC = 0.92, p < 0.0001 for mDCs; AUC = 0.82, p < 0.0001 for B lymphocytes) or infertility (AUC = 0.83, p < 0.0001 for mDCs; AUC = 0.73, p = 0.006 for B lymphocytes). Our findings suggest that the levels of TLR2-expressing cells, particularly mDCs and B lymphocytes, may be an effective biomarker of endometriosis, because the disease currently lacks clinically useful noninvasive biomarkers enabling early and cost-effective diagnosis.


Subject(s)
Dendritic Cells/immunology , Endometriosis/blood , Lymphocytes/immunology , Monocytes/immunology , Toll-Like Receptor 2/metabolism , Adult , Biomarkers/metabolism , Case-Control Studies , Endometriosis/diagnosis , Female , Flow Cytometry , Humans , Immunity, Innate , Middle Aged , Prospective Studies , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...