Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(15): 6979-6984, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523860

ABSTRACT

We demonstrate numerically how a spin wave (SW) beam obliquely incident on the edge of a thin film placed below a ferromagnetic stripe can excite leaky SWs guided along the stripe. During propagation, leaky waves emit energy back into the layer in the form of plane waves and several laterally shifted parallel SW beams. This resonance excitation, combined with interference effects of the reflected and re-emitted waves, results in the magnonic Wood's anomaly and a significant increase of the Goos-Hänchen shift magnitude. This yields a unique platform to control SW reflection and transdimensional magnonic router that can transfer SWs from a 2D platform into a 1D guided mode.

2.
Sci Rep ; 11(1): 4428, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33627713

ABSTRACT

Subwavelength resonant elements are essential building blocks of metamaterials and metasurfaces, which have revolutionized photonics. Despite similarities between different wave phenomena, other types of interactions can make subwavelength coupling significantly distinct; its investigation in their context is therefore of interest both from the physics and applications perspective. In this work, we demonstrate a fully magnonic Gires-Tournois interferometer based on a subwavelength resonator made of a narrow ferromagnetic stripe lying above the edge of a ferromagnetic film. The bilayer formed by the stripe and the film underneath supports two propagative spin-wave modes, one strongly coupled with spin waves propagating in the rest of the film and another almost completely reflected at the ends of the bilayer. When the Fabry-Perot resonance conditions for this mode are satisfied, the weak coupling between both modes is sufficient to achieve high sensitivity of the phase of waves reflected from the resonator to the stripe width and, more interestingly, also to the stripe-film separation. Such spin-wave phase manipulation capabilities are a prerequisite for the design of spin-wave metasurfaces and may stimulate development of magnonic logic devices and sensors detecting magnetic nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...