Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 830: 154700, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35331757

ABSTRACT

Reconstruction of fluvial style changes in the San River in the Subcarpathian Basins is based on geomorphological and sedimentological analyses. The time control of alluvial fills and temporal changes in the river channel are derived from radiocarbon and optically stimulated luminescence dating combined with independent pollen-based biochronostratigraphy. The results showed that the alluvial plain of the braided (BR) or braided-meandering (BR-M?) river was abandoned before 12,800 cal BP. Large meanders (LM) were cut off in the older part of the Younger Dryas (YD; ca. 12,600 cal BP), and in the younger part of this period (ca. 12,450 cal BP). The small meanders (SM) developed at the end of the YD and were abandoned at the onset of the Preboreal (PB; ca.11,550 cal BP). The erosion phase at the YD-PB transition, reported from many valleys in Central Europe, was not confirmed in the study area. The full cycle of San River channel transformation (BR (BR-M?) → LM → SM); was estimated to be approximately 1200 years. According to the palynological data, open pine forests with birch that survived from the end of the Allerød dominated the landscape of the river valley during the YD cooling and did not undergo major changes during the warming in the early PB. Therefore, we assume that the influence of vegetation changes in the San River channel pattern transformation was nonsignificant. The location of the studied palaeochannels in the floodbasin filled with silty clayey deposits may have influenced the formation of relatively narrow and deep channels, than that of much the wider and shallower meanders from the YD, situated several kilometres downstream of the surveyed sites.


Subject(s)
Forests , Rivers , Europe , Poland , Pollen
2.
Sci Total Environ ; 615: 1048-1060, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29751408

ABSTRACT

The European beaver (Castor fiber) was reintroduced in the Polish Carpathians in the 1980s after a few centuries of absence. It gradually colonized suitable habitats in the Raba River valley and elsewhere. The question arises as to whether beaver activity can play a role in the local improvement of hydromorphological conditions and spontaneous renaturalization of the Raba River channel. Field surveys were performed in morphodynamically and structurally homogeneous reaches of the river. Traces of beaver activity were identified and used to estimate the studied beaver population. Local beaver impact on the studied river channel was also determined. The Raba channel is trained along about 80% of its length and considerably incised. Traces of beavers activity were found in 16 out of 31 river reaches, mainly in the upper and lower river course. The study showed that relatively flat channel gradient, small maximum bed-material grain size, and high channel sinuosity favour beaver presence. The largest number of beaver habitats was identified in river reaches strongly altered by man and characterized by a uniform channel structure. Beaver impact on channel structure varies depending on differences of the river channel features in upper and lower reaches of the Raba River channel. In upper reaches, the impact of beaver activity (mostly dams) is reflected in increased lateral erosion, while slower water current reduces the tendency for bed degradation. In lower reaches, beaver impact is mostly limited to bank fragmentation (slides and burrows). Lateral erosion, accumulation of material at the toe of riverbanks, and wood debris accumulation all produce a local impact on river channel width. These beaver-initiated processes mostly alter artificially homogenized river reaches. Beavers may actually play a substantial role in future renaturalization of both upper and lower reaches of the Raba River.


Subject(s)
Ecosystem , Environmental Restoration and Remediation/methods , Rivers , Rodentia/physiology , Animals , Poland
3.
Sci Total Environ ; 544: 339-53, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26657380

ABSTRACT

Beaver (Castor sp.) can change the riverine environment through dam-building and other activities. The European beaver (Castor fiber) was extirpated in Poland by the nineteenth century, but populations are again present as a result of reintroductions that began in 1974. The goal of this paper is to assess the impact of beaver activity on montane fluvial system development by identifying and analysing changes in channel and valley morphology following expansion of beaver into a 7.5 km-long headwater reach of the upper Wisloka River in southeast Poland. We document the distribution of beaver in the reach, the change in river profile, sedimentation type and storage in beaver ponds, and assess how beaver dams and ponds have altered channel and valley bottom morphology. The upper Wisloka River fluvial system underwent a series of anthropogenic disturbances during the last few centuries. The rapid spread of C. fiber in the upper Wisloka River valley was promoted by the valley's morphology, including a low-gradient channel and silty-sand deposits in the valley bottom. At the time of our survey (2011), beaver ponds occupied 17% of the length of the study reach channel. Two types of beaver dams were noted: in-channel dams and valley-wide dams. The primary effect of dams, investigated in an intensively studied 300-m long subreach (Radocyna Pond), was a change in the longitudinal profile from smooth to stepped, a local reduction of the water surface slope, and an increase in the variability of both the thalweg profile and surface water depths. We estimate the current rate of sedimentation in beaver ponds to be about 14 cm per year. A three-stage scheme of fluvial processes in the longitudinal and transverse profile of the river channel is proposed. C. fiber reintroduction may be considered as another important stage of the upper Wisloka fluvial system development.


Subject(s)
Environmental Monitoring , Ponds , Rodentia , Water Movements , Animals , Ecosystem , Poland , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...