Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(9): e30816, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765085

ABSTRACT

Rosa canina L., commonly known as rosehip, is of notable scientific interest for its applications in nutrition, cosmetics, and pharmaceuticals. This review article highlights its health-promoting properties, including antioxidant, anti-inflammatory, hepatoprotective, and anticarcinogenic effects, attributed to its rich content of phenolic acids, carotenoids, tocopherols, and vitamins. With growing interest in sustainable practices, rosehip by-products are increasingly valorized. For instance, cold-pressed rosehip seed oil is a valuable source of polyunsaturated fatty acids, while incorporating rosehip pomace into snacks enhances their nutritional profile, positioning them as potential functional foods and dietary supplements. This article aims to provide a comprehensive overview of advancements in utilizing rosehip and its by-products, emphasizing their role in enriching food and pharmaceutical products with nutritional and functional bioactivities.

2.
Food Chem X ; 22: 101298, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38586221

ABSTRACT

This study aimed to investigate the effect of ancient wheat flour type and sourdough fermentation time on the nutritional, textural and sensorial properties of fiber-rich sourdough bread. The proximate composition, minerals, carbohydrates, organic acids, volatiles, total phenolic content, simulated gastrointestinal digestion, textural and sensorial characteristics were investigated. Bread's minerals, total phenolics, cellulose contents and radical scavenging activity variations clearly indicates an increasing trend with sourdoughs fermentation time. Compared to maltose and glucose, fructose was predominant in all bread samples. Sourdough fermentation time and wheat type had non-significant influence on fructose content from digested fraction. Excepting emmer bread, fermentation time increased in vitro digestibility values for tested samples. The crumb textural parameters (hardness, gumminess, chewiness, cohesiveness and springiness index) were positively influenced by fermentation time. The specific clustering of the analysed characteristics distinguished emmer bread from other samples in terms of volatile compounds, textural and overall acceptability, being preferred by panellists.

3.
Foods ; 13(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38254559

ABSTRACT

This investigation aimed to assess the chemical composition and biological activities of bog bilberry (Vaccinium uliginosum L.) leaves. Hydroethanolic extracts were obtained using four extraction techniques: one conventional (CE) and three alternative methods; ultrasound (UAE), microwave (MAE) and high-pressure (HPE) extractions. Spectrophotometric analysis was conducted to determine their chemical content, including the total phenolic content (TPC) and total flavonoid content (TFC). Furthermore, their antioxidative and antimicrobial properties were evaluated. HPLC (high performance liquid chromatography) analysis identified and quantified 17 phenolic compounds, with chlorogenic acid being the predominant compound, with the lowest level (37.36 ± 0.06 mg/g) for the bog bilberry leaf extract obtained by CE and the highest levels (e.g., HPE = 44.47 ± 0.08 mg/g) for the bog bilberry leaf extracts obtained by the alternative methods. Extracts obtained by HPE, UAE and MAE presented TPC values (135.75 ± 2.86 mg GAE/g; 130.52 ± 1.99 mg GAE/g; 119.23 ± 1.79 mg GAE/g) higher than those obtained by the CE method (113.07 ± 0.98 mg GAE/g). Regarding the TFC values, similar to TPC, the highest levels were registered in the extracts obtained by alternative methods (HPE = 43.16 ± 0.12 mg QE/g; MAE = 39.79 ± 0.41 mg QE/g and UAE = 33.89 ± 0.35 mg QE/g), while the CE extract registered the lowest level, 31.47 ± 0.28 mg QE/g. In the case of DPPH (1,1-diphenyl-2-picrylhydrazyl) antioxidant activity, the extracts from HPE, UAE and MAE exhibited the strongest radical scavenging capacities of 71.14%, 63.13% and 60.84%, respectively, whereas the CE extract registered only 55.37%. According to Microbiology Reader LogPhase 600 (BioTek), a common MIC value of 8.88 mg/mL was registered for all types of extracts against Staphylococcus aureus (Gram-positive bacteria) and Salmonella enterica (Gram-negative bacteria). Moreover, the alternative extraction methods (UAE, HPE) effectively inhibited the growth of Candida parapsilosis, in comparison to the lack of inhibition from the CE method. This study provides valuable insights into bog bilberry leaf extracts, reporting a comprehensive evaluation of their chemical composition and associated biological activities, with alternative extraction methods presenting greater potential for the recovery of phenolic compounds with increased biological activities than the conventional method.

4.
Food Chem X ; 20: 100960, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144864

ABSTRACT

Citrus essential oils are natural products with various bioactive properties (e.g., antimicrobial, antioxidant, and antimutagenic activities), that are generally recognized as safe (GRAS) by Food and Drug Administration (FDA) to be used as flavorings and food additives. Nonetheless, due to their high volatility, low solubility in water, low thermal stability, susceptibility to oxidation, and strong flavor, their applications in the food industry are limited. Nanotechnology allows the incorporation of citrus essential oils into nano-emulsion systems, thus protecting them from the deterioration caused by external factors and maintaining or even improving their functional properties. This study aims to summarize the antioxidant, antimicrobial, and antimutagenic effects of the nano-emulsions based on essential oils from citrus peels with emphasis on their mechanisms of action and potential applications in, e.g., foods, pharmaceuticals, and cosmetics.

5.
Foods ; 12(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37959144

ABSTRACT

The beneficial health effects of prebiotics have been demonstrated in numerous research papers. However, their incorporation into daily food remains unfamiliar to consumers. This work evaluates the effects of the addition of resistant maltodextrin (RMD) on the sensory attributes of pasteurised orange juice, together with the physico-chemical properties and the aromatic profile. RMD addition increased the sweetness and decreased the acidity and bitterness, resulting in a higher overall panellists' rating of orange juice. It also proportionally increased °Brix together with density and decreased acidity. Colour changes were registered with higher RMD concentrations. Orange pulp presence affected the volume particle size distribution analysis, while RMD addition did not have any effect. The aroma volatile compounds were also analysed. Pulp-added samples showed a higher quantity of alcohol and aldehydes, whereas pulp-free samples registered higher terpene and terpenoid values. Ketones and acids were also quantified. RMD had a moderate impact on volatile compound quantifications, with the orange pulp presence playing a much more decisive role. A correspondence analysis was also performed to relate instrumental and sensory determinations for all samples. This work proves that the addition of RMD to orange juice is technologically feasible while also achieving a good response at the sensory level.

6.
Foods ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372507

ABSTRACT

Coenzyme Q10 (CoQ10) is a vitamin-like compound found naturally in plant- and animal-derived materials. This study aimed to determine the level of CoQ10 in some food by-products (oil press cakes) and waste (fish meat and chicken hearts) to recover this compound for further use as a dietary supplement. The analytical method involved ultrasonic extraction using 2-propanol, followed by high-performance liquid chromatography with diode array detection (HPLC-DAD). The HPLC-DAD method was validated in terms of linearity and measuring range, limits of detection (LOD) and quantification (LOQ), trueness, and precision. As a result, the calibration curve of CoQ10 was linear over the concentration range of 1-200 µg/mL, with an LOD of 22 µg/mL and an LOQ of 0.65 µg/mL. The CoQ10 content varied from not detected in the hempseed press cake and the fish meat to 84.80 µg/g in the pumpkin press cake and 383.25 µg/g in the lyophilized chicken hearts; very good recovery rates and relative standard deviations (RSDs) were obtained for the pumpkin press cake (100.9-116.0% with RSDs between 0.05-0.2%) and the chicken hearts (99.3-106.9% CH with RSDs between 0.5-0.7%), showing the analytical method's trueness and precision and thus its accuracy. In conclusion, a simple and reliable method for determining CoQ10 levels has been developed here.

7.
Molecules ; 28(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110690

ABSTRACT

Prunus spinosa L. fruit, commonly known as blackthorn, is a rich source of bioactive compounds, including flavonoids, anthocyanins, phenolic acids, vitamins, minerals, and organic acids, which exhibit significant antioxidant and antibacterial properties. Notably, flavonoids such as catechin, epicatechin, and rutin have been reported to have protective effects against diabetes, while other flavonoids, including myricetin, quercetin, and kaempferol, exhibit antihypertensive activity. Solvent extraction methods are widely used for the extraction of phenolic compounds from plant sources, owing to their simplicity, efficacy, and broad applicability. Furthermore, modern extraction techniques, such as microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), have been employed to extract polyphenols from Prunus spinosa L. fruits. This review aims to provide a comprehensive analysis of the biologically active compounds found in blackthorn fruits, emphasizing their direct physiological effects on the human body. Additionally, the manuscript highlights the potential applications of blackthorn fruits in various industries, including the food, cosmetics, pharmaceutical, and functional product sectors.


Subject(s)
Antioxidants , Prunus , Humans , Antioxidants/pharmacology , Antioxidants/analysis , Anthocyanins/analysis , Plant Extracts/pharmacology , Plant Extracts/analysis , Phenols/pharmacology , Phenols/analysis , Flavonoids/analysis , Fruit/chemistry
8.
Antioxidants (Basel) ; 12(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37107240

ABSTRACT

Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.

9.
Foods ; 12(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36900613

ABSTRACT

The continuous development of bakery products as well as the increased demands from consumers transform ancient grains into alternatives with high nutritional potential for modern wheat species. The present study, therefore, follows the changes that occur in the sourdough obtained from these vegetable matrices fermented by Lactiplantibacillus plantarum ATCC 8014 during a 24 h. period. The samples were analyzed in terms of cell growth dynamics, carbohydrate content, crude cellulose, minerals, organic acids, volatile compounds, and rheological properties. The results revealed significant microbial growth in all samples, with an average value of 9 log cfu/g but also a high accumulation of organic acids with the increase in the fermentation period. Lactic acid content ranged from 2.89 to 6.65 mg/g, while acetic acid recorded values between 0.51 and 1.1 mg/g. Regarding the content of simple sugars, maltose was converted into glucose, and fructose was used as an electron acceptor or carbon source. Cellulose content decreased as a result of the solubilization of soluble fibers into insoluble fibers under enzymatic action, with percentages of 3.8 to 9.5%. All sourdough samples had a high content of minerals; the highest of which-Ca (246 mg/kg), Zn (36 mg/kg), Mn (46 mg/kg), and Fe (19 mg/kg)-were recorded in the einkorn sourdough.

10.
Metabolites ; 13(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36837891

ABSTRACT

Food analysts have developed three primary techniques for coenzyme Q10 (CoQ10) production: isolation from animal or plant matrices, chemical synthesis, and microbial fermentation; this literature review is focused on the first method. Choosing the appropriate analytical method for determining CoQ10 in a particular food product is essential, as this analyte is a quality index for healthy foods; various associations of extraction and quantification techniques are available in the literature, each having advantages and disadvantages. Several factors must be considered when selecting an analytical method, such as specificity, linear range, detection limit, quantification limit, recovery rate, operation size, analysis time, equipment availability, and costs. In another train of thought, the food sector produces a significant amount of solid and liquid waste; therefore, waste-considered materials can be a valuable source of CoQ10 that can be recovered and used as a fortifying ingredient or dietary supplement. This review also pursues identifying the richest food sources of CoQ10, and has revealed them to be vegetable oils, fish oil, organs, and meat.

11.
J Sci Food Agric ; 103(2): 680-691, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36053837

ABSTRACT

BACKGROUND: Pumpkin seed and sunflower oil are rich in bioactive compounds, but are prone to oxidation during storage. Their fatty acids, carotenoid and volatile compounds and their Fourier-transform infrared (FTIR) profiles were studied during 8 months storage in order to assess the overall quality, but also to assess the impact of the oleogelation as conditioning process. RESULTS: The fatty acids methyl esters were analyzed by gas chromatography-mass spectrometry (GC-MS). The linoleic acid was the most abundant in the oils (604.6 g kg-1 in pumpkin and 690 g kg-1 in sunflower), but also in oleogels. Through high-performance liquid chromatography (HPLC), lutein and ß-carotene were determined as specific carotenoid compounds of the pumpkin seed oil and oleogel, in a total amount of 0.0072 g kg-1 . The volatile compounds profile revealed the presence of alpha-pinene for the pumpkin seed oil and oleogels and a tentative identification of limonene for the sunflower oil. Hexanal was also detected in the oleogels, indicating a thermal oxidation, which was further analyzed through infrared spectroscopy. CONCLUSIONS: During 8 months storage, the decrease of polyunsaturated fatty acid total amount was 5.72% for the pumpkin seed oil and 3.55% for the oleogel, while in the sunflower oil samples of 2.93% and 3.28% for the oleogel. It was concluded that oleogelation might protect specific carotenoid compounds, since the oleogels displayed higher content of ß-carotene at each storage time. Hexanal and heptanal were detected during storage, regardless of the oil or oleogel type. FTIR analysis depicts the differences in the constituent fatty acids resulting due to thermal oxidation or due to storage. © 2022 Society of Chemical Industry.


Subject(s)
Cucurbita , Cucurbita/chemistry , Fatty Acids/chemistry , Carotenoids/analysis , Sunflower Oil/analysis , beta Carotene/analysis , Seeds/chemistry , Plant Oils/chemistry , Aldehydes/analysis
12.
Plants (Basel) ; 11(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36501302

ABSTRACT

Solanum bulbocastanum is a wild potato species, intensively used in potato breeding programs due to its resistance to environmental factors. Thus, its biochemical profile and putative human health-related traits might be transferred into potato cultivars aimed for consumption. This study aims to assess the phytochemical profile and the selective cytotoxicity of an S. bulbocastanum extract against breast cancer cells. Dry leaves were subjected to ultrasonication-assisted extraction in methanol [70%]. The phenolic and glycoalkaloid profiles were determined by HPLC-PDA/-ESI+-MS. The volatile profile was investigated by nontargeted ITEX/GC-MS. The extract was tested against three breast cancer cell lines (MCF7, MDA-MB-231, HS578T) and a healthy cell line (HUVEC) by the MTT assay, to assess its selective cytotoxicity. The phenolic profile of the extract revealed high levels of phenolic acids (5959.615 µg/mL extract), and the presence of flavanols (818.919 µg/mL extract). The diversity of the volatile compounds was rather low (nine compounds), whereas no glycoalkaloids were identified, only two alkaloid precursors (813.524 µg/mL extract). The extract proved to be cytotoxic towards all breast cancer cell lines (IC50 values between 139.1 and 356,1 µg/mL), with selectivity coefficients between 1.96 and 4.96 when compared with its toxicity on HUVECs. Based on these results we conclude that the exerted cytotoxic activity of the extract is due to its high polyphenolic content, whereas the lack of Solanaceae-specific glycoalkaloids might be responsible for its high selectivity against breast cancer cells in comparison with other extract obtained from wild Solanum species. However, further research is needed in order to assess the cytotoxicity of the individual compounds found in the extract, as well as the anti-tumor potential of the S. bulbocastanum tubers.

13.
Foods ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36429308

ABSTRACT

Fermented chili powders were obtained through the freeze-drying of fermented chili pastes and used as a condiment, acidifier, antioxidant, colorant, and microbial starter carrier in fermented salami production. Fermented chili powders were examined regarding carbohydrates, organic acids, vitamin C, phenolic compounds, carotenoids, and aroma profile. High concentrations of lactic (10.57-12.20%) and acetic acids (3.39-4.10%) were recorded. Vitamin C content was identified in the range of 398-1107 mg/100 g, with maximum values for C. annuum cv. Cayenne chili powder. Phenolic compounds showed values between 302-771 mg/100 g. Total carotenoid content was identified between 544-2462 µg/g, with high concentrations of capsanthin esters. Aroma profile analysis evidenced specific compounds (1-hexanol, 2-hexanol, hexenal, E-2-hexenal) with sensory importance and a more complex spectrum for Capsicum chinense cultivar. Plant-specific lactic acid bacteria showed dominance both in fermented chili paste, chili powder, and salami. Lactic and acetic acids from the fermented chili powder reduced the pH of the filling immediately, having a stabilizing effect on the meat. Nor molds or pathogens were identified in outer limits. Based on these results, fermented chili powders could be used as starter carriers in the production of fermented meat products for exceptional sensory properties and food safety management.

14.
Pharmaceutics ; 14(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36365231

ABSTRACT

This study presents phytochemical characterization and biological evaluation of Origanum vulgare L. essential oil (OEO) formulated as polymeric micelles drug delivery systems as a possible non-invasive approach for the management of skin tags. GC-MS analysis of Romanian OEO revealed the identification and quantification of 43 volatile compounds (thymol and carvacrol being the main ones). The antioxidant activity was shown by four consecrated methods: CUPRAC, ABTS, ORAC and DPPH. OEO was incorporated by micellar solubilization into a binary hydrogel based on a Pluronic F 127/L 31 block-copolymers mixture. The pH, consistency, spreadability, particle size, polydispersity index and zeta potential of the OEO-loaded poloxamer-based binary hydrogel (OEO-PbH) were investigated. OEO-PbH was skin compatible in terms of pH and exhibited adequate spreadability and consistency. The minimal inhibitory concentrations of the tested OEO were similar to those obtained for the formulation, lower (2.5 µg/mL) for yeast and higher (40-80 µg/mL) for Gram-negative bacilli. As keratinocytes are among main components of skin tags, an in vitro evaluation was conducted in order to see the effect of the formulation against HaCaT human keratinocytes. OEO-PbH decreased HaCaT cells migration and proliferation and elicited a cytotoxic and pro-apoptotic effect in a dose- and time-dependent manner. No harmful effect on the viability of dendritic cells (DCs) was detected following the incubation with different concentrations (0-200 µg/mL) of the 5% formulation. Treatment in inflammatory DCs (+LPS) indicated a decrease in cytokine production of IL-6, TNF-α and IL-23 but no significant effect on IL-10 in any of the tested concentrations.

15.
Polymers (Basel) ; 14(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36365499

ABSTRACT

Citrus essential oils possess many health-promoting benefits and properties of high interest in the food and agri-food sector. However, their large-scale application is limited by their sensitivity to environmental factors. Nanostructures containing citrus essential oils have been developed to overcome the high volatility and instability of essential oils with respect to temperature, pH, UV light, etc. Nanostructures could provide protection for essential oils and enhancement of their bioavailability and biocompatibility, as well as their biological properties. Nano-encapsulation is a promising method. The present review is mainly focused on methods developed so far for the nano-encapsulation of citrus essential oils, with emphasis on lipid-based (including liposomes, solid lipid nanoparticles, nanostructured lipid particles, and nano- and micro-emulsions) and polymer-based nanostructures. The physico-chemical characteristics of the obtained structures, as well as promising properties reported, with relevance for the food sector are also discussed.

16.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232670

ABSTRACT

Gadolinium-based contrast agents are molecular complexes which are extensively used for diagnostic purposes. Apart from their tremendous contribution to disease diagnostics, there are several issues related to their use. They are extremely stable complexes and potential contaminants of surface and ground waters, an issue which is documented worldwide. The irrigation of fields with contaminated surface waters or their fertilization with sludge from wastewater treatment plants can lead to the introduction of Gd into the human food supply chain. Thus, this study focused on the potential toxicity of Gd on plants. For this purpose, we have studied the molecular effects of gadobutrol (a well-known MRI contrast agent) exposure on in vitro-grown Stevia rebaudiana. The effects of gadobutrol on plant morphology, on relevant plant metabolites such as chlorophylls, carotenoids, ascorbic acids (HPLC), minerals (ICP-OES), and on the generation of free radical species (MDA assay and EPR) were assessed. Exposures of 0.01, 0.05, 0.1, 1, and 3 mM gadobutrol were used. We found a correlation between the gadobutrol dose and the plant growth and concentration of metabolites. Above the 0.1. mM dose of gadobutrol, the toxic effects of Gd+3 ions became significant.


Subject(s)
Organometallic Compounds , Stevia , Carotenoids , Contrast Media/toxicity , Gadolinium/toxicity , Gadolinium DTPA , Humans , Magnetic Resonance Imaging , Sewage
17.
Metabolites ; 12(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36295864

ABSTRACT

Essential oils are a category of agro-based industrial products experiencing increasing demand. In this research, three essential oils obtained by steam distillation from lavender, sage and basil plants cultivated in temperate continental conditions of Transylvania were investigated for chemical composition, physical characteristics and biological activity (antimicrobial and cytotoxic effect on cancer cell lines). The number of identified compounds varied: 38 for lavender, 29 for sage essential oil and 41 for basil. The volatile profile was dominated by terpenes and terpenoids (>80%). Major components were beta-linalool and linalool acetate in lavender essential oil; thujones and camphor in sage essential oil; beta-linalool, thujone, camphor and eucalyptol in basil essential oil. Refractive index of the essential oils was lowest for lavender and highest for sage. Antibacterial activity was strongest for basil, moderate for lavender and weakest for sage essential oil. The most active on both colon adenocarcinoma (Caco-2) and ovary carcinoma (A2780) was sage essential oil.

18.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080212

ABSTRACT

Dichrostachys cinerea (L.) Wigth & Arn. (DC) is widely used in traditional medicine against several inflammatory diseases, especially rheumatoid arthritis, because of its antioxidant and anti-inflammatory effects. This study aimed to characterize the polyphenol-rich DC fruit extracts and investigate the analgesic, anti-inflammatory, and antioxidant effects in a rat inflammation model induced by complete Freund's adjuvant (CFA). Water and ethanolic extracts were characterized using liquid chromatography coupled with mass spectrometry (LC-MS), Fourier-transform infrared (FTIR) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). The polyphenol-rich extracts were administered in three different concentrations for 30 days. Pain threshold, thermal hyperalgesia, edema, and serum biomarkers specific to inflammatory processes or oxidative stress were evaluated. Both extracts were rich in polyphenolic compounds, mainly flavan-3-ols, proanthocyanidins, and flavone glycosides, which had important in vitro antioxidant capacity. DC fruit extracts administration had the maximum antinociceptive and anti-inflammatory effects after one day since the CFA injection and showed promising results for long-term use as well. The measurement of pro-inflammatory cytokines, cortisol, and oxidative stress parameters showed that DC extracts significantly reduced these parameters, being dose and extract-type dependent. These results showed potential anti-inflammatory, analgesic, and antioxidative properties and revealed the necessity of using a standardized polyphenolic DC extract to avoid result variability.


Subject(s)
Arthritis, Experimental , Fabaceae , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/analysis , Arthritis, Experimental/drug therapy , Freund's Adjuvant , Fruit/chemistry , Plant Extracts/chemistry , Polyphenols/analysis , Rats , Rats, Wistar
19.
Nutrients ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079730

ABSTRACT

Cereal processing generates around 12.9% of all food waste globally. Wheat bran, wheat germ, rice bran, rice germ, corn germ, corn bran, barley bran, and brewery spent grain are just a few examples of wastes that may be exploited to recover bioactive compounds. As a result, a long-term strategy for developing novel food products and ingredients is encouraged. High-value compounds like proteins, essential amino acids, essential fatty acids, ferulic acid, and other phenols, tocopherols, or ß-glucans are found in cereal by-products. This review aims to provide a critical and comprehensive overview of current knowledge regarding the bioactive compounds recovered from cereal by-products, emphasizing their functional values and potential human health benefits.


Subject(s)
Edible Grain , Refuse Disposal , Dietary Fiber/analysis , Edible Grain/chemistry , Humans , Plant Oils/analysis , Seeds/chemistry
20.
Nutrients ; 14(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36079770

ABSTRACT

Brewers' spent grain (BSG), the main by-product of the brewing industry, is a rich source of minerals and water-soluble vitamins such as thiamine, pyridoxine, niacin, and cobalamin. Bioaccessibility through in vitro digestion is an important step toward the complete absorption of minerals and B group vitamins in the gastrointestinal system. Inductively coupled plasma optical emission spectrometry (ICP-OES) together with inductively coupled plasma quadrupole mass spectrometry (ICP-MS) was used for the quantification of the macro- and micro-minerals. An ultra-high performance liquid chromatography (UHPLC) system coupled with a diode array detector (DAD) was used for B group vitamin identification. Four different industrial BSG samples were used in the present study, with different percentages of malted cereals such as barley, wheat, and degermed corn. Calcium's bioaccessibility was higher in the BSG4 sample composed of 50% malted barley and 50% malted wheat (16.03%), while iron presented the highest bioaccessibility value in the BSG2 sample (30.03%) composed of 65% Pale Ale malt and 35% Vienna malt. On the other hand, vitamin B1 had the highest bioaccessibility value (72.45%) in the BSG3 sample, whilst B6 registered the lowest bioaccessibility value (16.47%) in the BSG2 sample. Therefore, measuring the bioaccessibilty of bioactive BSG compounds before their further use is crucial in assessing their bioavailability.


Subject(s)
Hordeum , Vitamin B Complex , Antioxidants/analysis , Edible Grain/chemistry , Hordeum/chemistry , Minerals/analysis , Triticum , Vitamin B Complex/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...