Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 113(12): 2724-33, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19249857

ABSTRACT

A detailed analysis of experimentally obtained temperature-dependent gas-phase kinetic data for the oxygen and carbon monoxide adsorption on small anionic gold (Au(n)(-), n = 1-3), silver (Ag(n)(-), n = 1-5), and binary silver-gold (Ag(n)Au(m)(-), n + m = 2, 3) clusters is presented. The Lindemann energy transfer model in conjunction with statistical unimolecular reaction rate theory is employed to determine the bond dissociation energies E(0) of the observed metal cluster complexes with O(2) and CO. The accuracy limits of the obtained binding energies are evaluated by applying different transition-state models. The assumptions involved in the data evaluation procedure as well as possible sources of error are discussed. The thus-derived binding energies of O(2) to pure silver and binary silver-gold cluster anions are generally in excellent agreement with previously reported theoretical values. In marked contrast, the binding energies of O(2) and CO to Au(2)(-) and Au(3)(-) determined via temperature-dependent reaction kinetics are consistently lower than the theoretically predicted values.

2.
Phys Chem Chem Phys ; 7(14): 2706-9, 2005 Jul 21.
Article in English | MEDLINE | ID: mdl-16189583

ABSTRACT

Femtosecond nuclear dynamics of mass-selected neutral Ag2 and Ag2O2 clusters are investigated with the 'negative ion-to neutral-to positive ion'(NeNePo) technique. For the bare silver dimer, wave packet dynamics occurring in the neutral electronic ground state and in the first excited triplet state are observed after photodetachment from the anion with 3.05 eV photon energy. While the dynamics in the ground state lead to an oscillatory structure in the NeNePo-pump-probe spectra with a vibrational constant of 185 cm-1, the dynamics in the triplet state are assigned to a bound-free transition leading to dissociation. Photodetachment from the Ag2O2- complex results in the desorption of O2. The experimental data clearly show the influence of the desorbing oxygen ligand on the nuclear dynamics of the silver dimer inducing a red shift in the vibrational frequency and an intensity enhancement of the oscillatory signal.


Subject(s)
Oxides/chemistry , Oxygen/chemistry , Silver Compounds/chemistry , Silver/chemistry , Adsorption , Dimerization , Ligands , Oscillometry , Photochemistry , Protons , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...