Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eukaryot Cell ; 6(3): 430-42, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17259548

ABSTRACT

Copines make up a family of soluble, calcium-dependent, membrane binding proteins found in a variety of eukaryotic organisms. In an earlier study, we identified six copine genes in the Dictyostelium discoideum genome and focused our studies on cpnA. Our previous localization studies of green fluorescent protein-tagged CpnA in Dictyostelium suggested that CpnA may have roles in contractile vacuole function, endolysosomal trafficking, and development. To test these hypotheses, we created a cpnA- knockout strain, and here we report the initial characterization of the mutant phenotype. The cpnA- cells exhibited normal growth rates and a slight cytokinesis defect. When placed in starvation conditions, cpnA- cells appeared to aggregate into mounds and form fingers with normal timing; however, they were delayed or arrested in the finger stage. When placed in water, cpnA- cells formed unusually large contractile vacuoles, indicating a defect in contractile vacuole function, while endocytosis and phagocytosis rates for the cpnA- cells were similar to those seen for wild-type cells. These studies indicate that CpnA plays a role in cytokinesis and contractile vacuole function and is required for normal development, specifically in the later stages prior to culmination. We also used real-time reverse transcription-PCR to determine the expression patterns of all six copine genes during development. The six copine genes were expressed in vegetative cells, with each gene exhibiting a distinct pattern of expression throughout development. All of the copine genes except cpnF showed an upregulation of mRNA expression at one or two developmental transitions, suggesting that copines may be important regulators of Dictyostelium development.


Subject(s)
Calcium-Binding Proteins/physiology , Cell Division/physiology , Cytokinesis/physiology , Dictyostelium/cytology , Dictyostelium/physiology , Membrane Proteins/physiology , Vacuoles/metabolism , Animals , Endocytosis/physiology , Gene Silencing , Protein Transport , Protozoan Proteins , Vacuoles/ultrastructure
2.
BMC Cell Biol ; 6: 46, 2005 Dec 12.
Article in English | MEDLINE | ID: mdl-16343335

ABSTRACT

BACKGROUND: Copines are soluble, calcium-dependent membrane binding proteins found in a variety of organisms. Copines are characterized as having two C2 domains at the N-terminal region followed by an "A domain" at the C-terminal region. The "A domain" is similar in sequence to the von Willebrand A (VWA) domain found in integrins. The presence of C2 domains suggests that copines may be involved in cell signaling and/or membrane trafficking pathways. RESULTS: We have identified six copines genes in the Dictyostelium discoideum genome, cpnA-cpnF, and have focused our studies on cpnA. CpnA is expressed throughout development and was shown to be capable of binding to membranes in a calcium-dependent manner in vitro. A GFP-tagged CpnA was also capable of binding to membranes in a calcium-dependent manner in vitro. In live wildtype Dictyostelium cells expressing GFP-CpnA, GFP-CpnA was typically found in the cytoplasm without any specific localization to membranes. However, in a small subset of starved cells, GFP-CpnA was observed to bind transiently (typically approximately 1-10 s) to the plasma membrane and intracellular vacuoles. In some cells, the transient membrane localization of GFP-CpnA was observed to occur multiple times in an oscillatory manner over several minutes. In plasma membrane disrupted cells, GFP-CpnA was observed to associate with the plasma membrane and intracellular vacuoles in a calcium-dependent manner. In fixed cells, GFP-CpnA labeled the plasma membrane and intracellular vacuoles, including contractile vacuoles, organelles of the endolysosomal pathway, and phagosomes. CONCLUSION: Our results show that Dictyostelium has multiple copine homologs and provides an excellent system in which to study copine function. The localization of a GFP-tagged CpnA to the plasma membrane, contractile vacuoles, organelles of the endolysosomal pathway, and phagosomes suggests that CpnA may have a role in the function of these organelles or the trafficking to and from them. In addition, we hypothesize that the observed transient oscillatory membrane localization of GFP-CpnA in a small subset of starved cells is caused by fast calcium waves and speculate that CpnA may have a role in development, particularly in the differentiation of stalk cells.


Subject(s)
Carrier Proteins/metabolism , Cell Membrane/metabolism , Dictyostelium/cytology , Dictyostelium/metabolism , Vacuoles/metabolism , Animals , Calcium/metabolism , Carrier Proteins/genetics , Endosomes/metabolism , Genes, Reporter , Lysosomes/metabolism , Phagosomes/metabolism , Protein Binding , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...