Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 6(3): txac116, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36172456

ABSTRACT

A large pen feedlot study was conducted to evaluate the response of yearling steers fed novel sources of rumen-protected folate (RPFA) and cobalt (cobalt pectinate; Co-PECT) on plasma levels of vitamin B12 and folate, growth performance, and carcass characteristics. A total of 2,100 steers (initial BW = 381 ±â€…45.2 kg.) were enrolled in the study at the time of randomization with 2,091 steers started on treatment diets following the transition to the finishing diet. A generalized randomized block design with sampling error (GRBD) with two treatments and 15 pen replications per treatment (5 blocks × 6 pens/block; 30 pens total with 70 steers/pen) were evaluated with pen serving as the experimental unit. A control (CON) treatment consisted of the standard finishing diet while the test diet consisted of the standard finishing diet providing 3.0 mg ∙ kg-1 DM of RPFA and 1.0 mg ∙ kg-1 DM total supplemental cobalt with approximately half coming from Co-PECT (TEST). Blood samples were collected from 60 randomly selected steers at study initiation and prior to shipping for plasma B12 and folate measurement. Data were analyzed with the model including fixed effects of treatment, block, and treatment within block interaction. Live growth performance was not affected by treatment; however, carcass-adjusted performance and hot carcass weight were numerically improved by TEST in 3 of the 5 blocks (treatment × within block interaction, P ≤ 0.03) of cattle. Plasma levels for both folic acid and vitamin B12 were extremely low at study initiation and increased over the course of the feeding period. Feeding TEST increased (P < 0.01) plasma B12 levels compared to CON by the completion of the trial; however, mean levels would still be considered marginal. Plasma folate was lower (P < 0.05) in TEST steers at the beginning of the study, with no difference between treatments by the time cattle were shipped. Results suggested that cattle coming into the feedlot may be of low or marginal status in both plasma folate and vitamin B12. While the status of folate and B12 improved in both CON and TEST with days on feed, providing RPFA and Co-PECT further helped improve vitamin B12 status; although, overall levels remained low, which may have affected the overall response to RPFA. Additional research is required to better understand the role of B vitamin supplementation for growing-finishing feedlots and develop methods for assessing the status and improving potential responses.

2.
Article in English | MEDLINE | ID: mdl-28469842

ABSTRACT

BACKGROUND: Immune dysfunction and a higher risk of uterine infections are characteristics of the transition into lactation in dairy cows. The supply of complexed trace minerals, which are more bioavailable, could help overcome the greater needs of these nutrients in tissues around parturition and early lactation. RESULTS: Twenty Holstein cows received an oral bolus with a mix of inorganic trace minerals (INO) or complexed trace minerals (AAC) to achieve 75, 65, 11, and 1 ppm supplemental Zn, Mn, Cu, and Co, respectively, in the total diet dry matter from -30 d through +30 d relative to parturition. Blood for polymorphonuclear leukocyte (PMNL) isolation was collected at -30, -15, +10, and + 30 d relative to parturition, whereas endometrium biopsies were performed at +14 and +30 d. Feeding AAC led to greater PMNL expression of genes related with inflammation response (DDX58), oxidative stress response (MPO), eicosanoid metabolism (PLA2G4A and ALOX5AP), transcription regulation (PPARG), and cellular adhesion (TLN1). The upregulation by AAC in endometrium of genes related with inflammation response (TLR2, TLR4, NFKB1, TNF, IL6, IL1B, IL10, IL8), prostaglandin synthesis (PTGS2, PTGES), and antioxidant responses (NFE2L2, SOD1) indicated a faster remodeling of uterine tissue and potentially greater capacity to control a local bacterial invasion. CONCLUSIONS: Data indicate that trace mineral supplementation from amino acid complexes improves PMNL activity and allows the prompt recovery of uterine tissue during early lactation. As such, the benefits of complexed trace minerals extend beyond an improvement of liver function and productive performance.

3.
PLoS One ; 11(5): e0155804, 2016.
Article in English | MEDLINE | ID: mdl-27243218

ABSTRACT

The peripartum (or transition) period is the most-critical phase in the productive life of lactating dairy cows and optimal supply of trace minerals through more bioavailable forms could minimize the negative effects associated with this phase. Twenty Holstein cows received a common prepartal diet and postpartal diet. Both diets were partially supplemented with an inorganic (INO) mix of Zn, Mn, and Cu to supply 35, 45, and 6 ppm, respectively, of the diet dry matter (DM). Cows were assigned to treatments in a randomized completed block design, receiving an daily oral bolus with INO or organic trace minerals (AAC) Zn, Mn, Cu, and Co to achieve 75, 65, 11, and 1 ppm supplemental, respectively, in the diet DM. Liver tissue and blood samples were collected throughout the experiment. The lower glutamic-oxaloacetic transaminase concentration after 15 days in milk in AAC cows indicate lower hepatic cell damage. The concentration of cholesterol and albumin increased, while IL-6 decreased over time in AAC cows compared with INO indicating a lower degree of inflammation and better liver function. Although the acute-phase protein ceruloplasmin tended to be lower in AAC cows and corresponded with the reduction in the inflammatory status, the tendency for greater serum amyloid A concentration in AAC indicated an inconsistent response on acute-phase proteins. Oxygen radical absorbance capacity increased over time in AAC cows. Furthermore, the concentrations of nitric oxide, nitrite, nitrate, and the ferric reducing ability of plasma decreased with AAC indicating a lower oxidative stress status. The expression of IL10 and ALB in liver tissue was greater overall in AAC cows reinforcing the anti-inflammatory response detected in plasma. The greater overall expression of PCK1 in AAC cows indicated a greater gluconeogenic capacity, and partly explained the greater milk production response over time. Overall, feeding organic trace minerals as complexed with amino acids during the transition period improved liver function and decreased inflammation and oxidative stress.


Subject(s)
Animal Feed/analysis , Cobalt/pharmacology , Copper/pharmacology , Dietary Supplements , Lactation/physiology , Manganese/pharmacology , Trace Elements/pharmacology , Zinc/pharmacology , Albumins/chemistry , Animals , Aspartate Aminotransferases/metabolism , Biomarkers/analysis , Blood Chemical Analysis , Cattle , Ceruloplasmin/metabolism , Cholesterol/analysis , Diet , Female , Gluconeogenesis/genetics , Inflammation , Interleukin-10/metabolism , Liver/metabolism , Milk/chemistry , Oxidative Stress/drug effects , Peripartum Period , Phosphoenolpyruvate Carboxykinase (GTP)/biosynthesis , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...