Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37512293

ABSTRACT

Thin films of tin (II) sulfide (SnS) were deposited onto a 500 µm thick copper substrate by a chemical bath method. The effect of sodium (Na) doping in these films was studied. The synthesis of the films was performed at temperatures of 60, 70, and 80 °C for 5 min. The microstructure of the SnS films analyzed by scanning electron microscopy (SEM) showed a compact morphology of the films deposited at 80 °C. The edges of the SnS grains were rounded off with the addition of a commercial surfactant. The thickness of different SnS layers deposited on the copper substrate was found to be 230 nm from spectroscopic ellipsometry and cross-section analysis using SEM. The deposition parameters such as temperature, surfactant addition, and sodium doping time did not affect the thickness of the layers. From the X-ray diffraction (XRD) analysis, the size of the SnS crystallites was found to be around 44 nm. Depending on the process conditions, Na doping affects the size of the crystallites in different ways. A study of the conductivity of SnS films provides a specific conductivity value of 0.3 S. The energy dispersive analysis of X-rays (EDAX) equipped with the SEM revealed the Sn:S stoichiometry of the film to be 1:1, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis. The determined band-gap of SnS is equal to 1.27 eV and is in good agreement with the literature data.

2.
Polymers (Basel) ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893987

ABSTRACT

The lack of resistance of plastic objects to various pathogens and their increasing activity in our daily life have made researchers develop polymeric materials with biocidal properties. Hence, this paper describes the thermoplastic composites of Polyamide 12 mixed with 1-5 wt % of the nanoparticles of zinc, copper, and titanium oxides prepared by a twin-screw extrusion process and injection moulding. A satisfactory biocidal activity of polyamide 12 nanocomposites was obtained thanks to homogenously dispersed metal oxides in the polymer matrix and the wettability of the metal oxides by PA12. At 4 wt % of the metal oxides, the contact angles were the lowest and it resulted in obtaining the highest reduction rate of the Escherichia coli (87%), Candida albicans (53%), and Herpes simplex 1 (90%). The interactions of the nanocomposites with the fibroblasts show early apoptosis (11.85-27.79%), late apoptosis (0.81-5.04%), and necrosis (0.18-0.31%), which confirms the lack of toxicity of used metal oxides. Moreover, the used oxides affect slightly the thermal and rheological properties of PA12, which was determined by oscillatory rheology, thermogravimetric analysis, and differential scanning calorimetry.

3.
Materials (Basel) ; 14(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200154

ABSTRACT

The common occurrence of the phenomenon of cavitation in many industries and the multitude of factors affecting the resistance to cavitation erosion of used materials contribute to the search for methods and appropriate parameters of coating application that are able to minimize the effects of erosion. To determine the validity of the developed application parameters and the method used, cavitation studies and microscopic observations of the development of erosion during the cavitation test were carried out. There was a clear lack of incubation time and a linear increase in losses after 60 min of the test. Moreover, the damage observed during the test overlapped, widening the area of erosion and thus leading to damage to the integrity of the coating.

4.
Molecules ; 26(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808785

ABSTRACT

In implantable materials, surface topography and chemistry are the most important in the effective osseointegration and interaction with drug molecules. Therefore, structural and surface modifications of nanostructured titanium dioxide (TiO2) layers are reported in the present work. In particular, the modification of annealed TiO2 samples with -OH groups and silane derivatives, confirmed by X-ray photoelectron spectroscopy, is shown. Moreover, the ibuprofen release process was studied regarding the desorption-desorption-diffusion (DDD) kinetic model. The results proved that the most significant impact on the release profile is annealing, and further surface modifications did not change its kinetics. Additionally, the cell adhesion and proliferation were examined based on the MTS test and immunofluorescent staining. The obtained data showed that the proposed changes in the surface chemistry enhance the samples' hydrophilicity. Moreover, improvements in the adhesion and proliferation of the MG-63 cells were observed.


Subject(s)
Drug Carriers , Ibuprofen , Nanostructures , Osseointegration/drug effects , Osteoblasts/metabolism , Cell Line , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Humans , Ibuprofen/chemistry , Ibuprofen/pharmacokinetics , Ibuprofen/pharmacology , Nanostructures/chemistry , Nanostructures/therapeutic use , Titanium/chemistry , Titanium/pharmacokinetics , Titanium/pharmacology
5.
Sci Rep ; 11(1): 4851, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649494

ABSTRACT

In this paper, a novel method for the synthesis of Pt nanoparticles (PtNPs) using a microwave autoclave reactor is proposed. For benchmarking, the obtained results are compared with the traditional, batch method. A novel process window is proposed, which is the application of high-temperature and high-pressure. The main finding is that this only brings advantage, when the ionic strength of the system is enough low. It is explained, that at high pressure and high temperature, water behaves like only a slightly polar solvent, approaching a subcritical state. This reduces the electrostatic stabilization of the particles. Moreover, a change in the Pt particle shape is observed under high pressure and temperature conditions, suggesting that additional physical-chemical processes are involved.

6.
Materials (Basel) ; 13(16)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781714

ABSTRACT

Nanostructured anodic oxide layers on an FeAl3 intermetallic alloy was prepared by two-step anodization in 20 wt.% H2SO4 at 0 °C. The obtained anodic oxide coating was subjected to phase and chemical composition analysis using XPS and XRD techniques. An analysis of the band gap of individual coatings was also performed. The applied parameters of the anodization process were determined, enabling the formation of a nanostructured coating on the FeAl3 intermetallic alloy. Tests were carried out on samples produced at a voltage between 10 V and 22.5 V in 2.5 V steps. The produced coatings were subjected to an annealing process at 900 °C for 2 h in an argon protective atmosphere. Moreover, the influence of the substrate chemical composition on the chemical and phase composition of the anodic oxide are discussed. Band gaps of 2.37 eV at 22.5 V and 2.64 eV at 10 V were obtained directly after the anodizing process. After applying the heat treatment, band gap values of 2.10 eV at 22.5 Vand 2.48 eV for the coating produced at 10 V were obtained.

7.
Mater Sci Eng C Mater Biol Appl ; 104: 109957, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31500028

ABSTRACT

The present work concerns the surface modification of The Ti-13Nb-13Zr alloy by electropolishing and plasma electrolytic oxidation (PEO) process in Ca-containing electrolytes: calcium formate and calcium lactate solutions (0.1-1.0 mol dm-3) under voltages of 200 and 400 V. As a result of the PEO process, a porous oxide layer containing incorporated calcium compounds was formed on the Ti-13Nb-13Zr alloy surface. The morphology and chemical composition of the modified Ti-13Nb-13Zr alloy were investigated using scanning electron microscopy (SEM + EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). An increase in the applied voltage caused an increase in the number of pores and an increase in the amount of calcium incorporated in the oxide layer. Analysis showed that all samples were covered by titanium oxide, which was present in the form of anatase and/or rutile. In course of the experiments, it was showed that the proposed procedure has a positive effect on the overall bioactivity of the Ti-13Nb-13Zr alloy. Bioactivity investigations using simulated body fluid (SBF) confirmed the formation of apatite on the anodized surfaces. The cell adhesion results obtained by the use of human bone marrow mesenchymal stem cells (hBMSC) demonstrated that the PEO coatings on the Ti-13Nb-13Zr alloy remarkably enhanced the cytocompatibility of the substrate, indicating a potential application in orthopedic surgeries. The incorporation of Ca into the oxide layer proceeded to a higher extent when the PEO treatment was performed in the calcium lactate bath. The oxide layers formed in the calcium lactate solution exhibited also superior biological behavior towards hBMSC. This can be ascribed to the presence of carboxylic groups onto coatings' surface (as identified by XPS), which facilitated the anchoring of cells and tissues.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Calcium/chemistry , Ions/chemistry , Oxides/chemistry , Titanium/chemistry , Adult , Aged , Apatites/chemistry , Calcium Compounds/chemistry , Electrodes , Female , Humans , Lactates/chemistry , Male , Materials Testing , Microscopy, Electron, Scanning/methods , Middle Aged , Oxidation-Reduction , Porosity , Surface Properties , X-Ray Diffraction/methods
8.
Materials (Basel) ; 12(14)2019 Jul 13.
Article in English | MEDLINE | ID: mdl-31337006

ABSTRACT

Montmorillonite-the most popular mineral of the smectite group-has been recognized as a low-cost, easily available mineral sorbent of heavy metals and other organic and inorganic compounds that pollute water. The aim of this work was to determine the sorption mechanism and to identify the reaction products formed on the surface of montmorillonite and organo-montmorillonite after sorption of molybdates (Mo(VI)) and tungstates (W(VI)). Montmorillonites are often modified to generate a negative charge on the surface. The main objective of the study was to investigate and compare the features of Na-montmorillonite (Na-M), montmorillonite modified with dodecyl trimethyl ammonium bromide (DDTMA-M), and montmorillonite modified with didodecyl dimethyl ammonium bromide (DDDDMA-M) before and after sorption experiments. The material obtained after sorption was studied by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The XRD pattern showed the presence of a new crystallic phase in the sample that was observed under an SEM as an accumulation of crystals. The FTIR spectra showed bands related to Mo-O and W-O vibration (840 and 940 cm-1, respectively). The obtained results suggest that molybdenum(VI) and tungsten(VI) ions sorb onto the organo-montmorillonite in the form of alkylammonium molybdates and tungstates.

9.
Colloids Surf B Biointerfaces ; 171: 58-66, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30007219

ABSTRACT

Nowadays, titanium and its alloys are the most commonly used implantable materials. The surface topography and chemistry of titanium-based implants are responsible for osseointegration. One of the methods to improve biocompatibility of Ti implants is a modification with sodium hydroxide (NaOH) or 3-aminopropyltriethoxysilane (APTES). In the present study, anodic titanium dioxide (ATO) layers were electrochemically fabricated, and then immersed in a NaOH solution or in NaOH and APTES solutions. The functionalized samples were characterized by using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). All samples were examined as drug delivery systems and scaffolds for cell culturing. Based on the parameters of the fitted desorption-desorption-diffusion (DDD) model parameters, it was concluded that the modification with NaOH increased the amount of released ibuprofen and inhibited the release process. Osteoblast-like cell line (SAOS-2) was used to investigate the cell response on the non-modified and modified ATO samples. The MTS test and immunofluorescent staining were carried out to examine cell adhesion and proliferation. The data showed that the modification of nanoporous TiO2 layers with small molecules such as APTES enhanced metabolic activity of adhered cells compared with the non-modified and NaOH-modified TiO2 layers. In addition, the cells had a polygonal-like morphology with distinct projecting actin filaments and were well dispersed over the whole analyzed surface.


Subject(s)
Drug Delivery Systems , Osteoblasts/cytology , Osteoblasts/drug effects , Titanium/chemistry , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Electrochemical Techniques , Electrodes , Humans , Particle Size , Porosity , Propylamines/chemistry , Silanes/chemistry , Sodium Hydroxide/chemistry , Surface Properties
10.
Anal Chim Acta ; 931: 47-56, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27282750

ABSTRACT

The paper reports on investigation of the pH sensing mechanism of thick film RuO2-Ta2O5 sensors by using X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Interdigitated conductimetric pH sensors were screen printed on alumina substrates. The microstructure and elemental composition of the films were examined by scanning electron microscopy and energy dispersive spectroscopy. The XPS studies revealed the presence of Ru ions at different oxidation states and the surface hydroxylation of the sensing layer increasing with increasing pH. The EIS analysis carried out in the frequency range 10 Hz-2 MHz showed that the electrical parameters of the sensitive electrodes in the low frequency range were distinctly dependent on pH. The charge transfer and ionic exchange occurring at metal oxide-solution interface were indicated as processes responsible for the sensing mechanism of thick film RuO2-Ta2O5 pH sensors.

11.
Nanotechnology ; 26(28): 285701, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26112309

ABSTRACT

InSb nanowire (NW) arrays were prepared by pulsed electrodeposition combined with a porous template technique. The resulting polycrystalline material has a stoichiometric composition (In:Sb = 1:1) and a high length-to-diameter ratio. Based on a combination of Fourier transform infrared spectroscopy (FTIR) analysis and field-effect measurements, the band gap, the charge carrier polarity, the carrier concentration, the mobility and the effective mass for the InSb NWs was investigated. In this preliminary work, a transition from p-type to n-type charge transport was observed when the InSb NWs were subjected to annealing.

12.
Colloids Surf B Biointerfaces ; 128: 17-22, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25723345

ABSTRACT

Metallic monodisperse copper nanoparticles at a relatively high concentration (300 ppm CuNPs) have been synthesized by the reduction of copper salt with hydrazine in the aqueous SDS solution. The average particles size and the distribution size were characterized by Dynamic Light Scattering (DLS), Nanosight-Nanoparticle Tracking Analysis (NTA). The morphology and structure of nanoparticles were investigated using Scanning Electron Microscopy (SEM). The chemical composition of the copper nanoparticles was determined by X-ray Photoelectron Spectroscopy (XPS). Monodisperse copper nanoparticles with average diameter 50 nm were received. UV/vis absorption spectra confirmed the formation of the nanoparticles with the characteristic peak 550 nm. The antimicrobial studies showed that the copper nanoparticles had high activity against Gram-positive bacteria, standard and clinical strains, including methicillin-resistant Staphylococcus aureus, comparable to silver nanoparticles and some antibiotics. They also exhibited antifungal activity against Candida species.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Copper/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Candida/drug effects , Candida/growth & development , Copper/chemistry , Hydrazines/chemistry , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Oxidation-Reduction , Particle Size , Staphylococcus/drug effects , Staphylococcus/growth & development
13.
J Colloid Interface Sci ; 423: 76-84, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24703671

ABSTRACT

Thin films containing casein appear to be a promising material for coatings used in the medical area to promote biomineralization. α- and ß-casein and poly-L-arginine multilayer films were formed by the layer-by layer technique and their thickness and mass were analyzed by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). (PLArg/casein) films deposited in 0.15M NaCl exhibit fast (exponential-like) growth of the film thickness with the number of layers. The resulting films were c.a. 10 times thicker than obtained for poly-L-arginine and natural polyanions. We investigated the effect of the type of casein used for the film formation, finding that films with α-casein were slightly thicker than ones with ß-casein. The effect of polyethylene imine anchoring layer on the thickness and mass of adsorbed films was similar as for linear polyelectrolyte pairs. Thickness of "wet" films was c.a. two times larger than measured after drying that suggests their large hydration. The analysis of the mass of films during their post-treatment with the solutions of various ionic strength and pH provided the information concerning films stability. Films remain stable in the neutral and weakly basic conditions that includes HEPES buffer, which is widely used in cell culture and biomedical experiments. At the conditions of high ionic strength films swell but their swelling is reversible. Films containing caseins as polyanion appear to be more elastic and the same time more viscous than one formed with polyelectrolyte pairs. XPS elemental analysis confirmed binding of calcium ions by the casein embedded in the multilayers.


Subject(s)
Caseins/chemistry , Peptides/chemistry , Viscoelastic Substances/chemistry , Adsorption , Animals , Calcium/chemistry , Cattle , Hydrogen-Ion Concentration , Models, Molecular , Osmolar Concentration , Polyelectrolytes , Polymers/chemistry , Quartz Crystal Microbalance Techniques , Surface Properties
14.
ACS Appl Mater Interfaces ; 2(7): 1945-53, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20568701

ABSTRACT

Photocatalytic activity of Ag/TiO(2) composites obtained by photoreduction treatment (PRT) was investigated. The composite materials, containing various ratio of silver nanoparticles (0.6-3.7 wt %) were obtained by depositing silver on the Evonic-Degussa P25 titania surface. Selected samples whose color varied between light rose and purple brown were examined by SEM, TEM, XPS, DRS, and BET techniques. Flat band potential was determined using Roy method. TEM analysis showed spherically shaped silver nanoparticles of the diameter 4-12 nm. The XPS measurements revealed that silver particles were obtained mainly in metallic form. DRS spectra and photovoltage measurements showed that silver nanoparticles modified the P25 spectral properties but they changed neither the band gap nor the location of flat band potential. The photocatalytic activity of Ag/P25 composite was compared to the photocatalytic activity of pure P25 in the photooxidation reaction of an important potable water contaminant humic acid (HA) and two model compounds, oxalic acid (OxA) and formic acid (FA). The photodecomposition reaction was investigated in a batch reactor containing aqueous suspension of a photocatalyst illuminated by either UV or artificial sunlight (halogen lamp). The tests proved that a small amount of silver nanoparticles deposited on the titania surface triggers the increase in photocatalytic activity; this increase depends, however, on the decomposed substance.


Subject(s)
Humic Substances , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Silver/chemistry , Titanium/chemistry , Water Purification/methods , Catalysis , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...