Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Surg Open Sci ; 16: 77-81, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37818461

ABSTRACT

Background: Though governed by the same underlying biology, the differential physiology of children causes the temporal evolution from health to a septic/diseased state to follow trajectories that are distinct from adult cases. As pediatric sepsis data sets are less readily available than for adult sepsis, we aim to leverage this shared underlying biology by normalizing pediatric physiological data such that it would be directly comparable to adult data, and then develop machine-learning (ML) based classifiers to predict the onset of sepsis in the pediatric population. We then externally validated the classifiers in an independent adult dataset. Methods: Vital signs and laboratory observables were obtained from the Pediatric Intensive Care (PIC) database. These data elements were normalized for age and placed on a continuous scale, termed the Continuous Age-Normalized SOFA (CAN-SOFA) score. The XGBoost algorithm was used to classify pediatric patients that are septic. We tested the trained model using adult data from the MIMIC-IV database. Results: On the pediatric population, the sepsis classifier has an accuracy of 0.84 and an F1-Score of 0.867. On the adult population, the sepsis classifier has an accuracy of 0.80 and an F1-score of 0.88; when tested on the adult population, the model showed similar performance degradation ("data drift") as in the pediatric population. Conclusions: In this work, we demonstrate that, using a straightforward age-normalization method, EHR's can be generalizable compared (at least in the context of sepsis) between the pediatric and adult populations.

2.
J Surg Res ; 291: 683-690, 2023 11.
Article in English | MEDLINE | ID: mdl-37562230

ABSTRACT

INTRODUCTION: The clinical characterization of the functional status of active wounds in terms of their driving cellular and molecular biology remains a considerable challenge that currently requires excision via a tissue biopsy. In this pilot study, we use convolutional Siamese neural network (SNN) architecture to predict the functional state of a wound using digital photographs of wounds in a canine model of volumetric muscle loss (VML). METHODS: Digital images of VML injuries and tissue biopsies were obtained in a standardized fashion from an established canine model of VML. Gene expression profiles for each biopsy site were obtained using RNA sequencing. These profiles were converted to functional profiles by a manual review of validated gene ontology databases in which we determined a hierarchical representation of gene functions based on functional specificity. An SNN was trained to regress functional profile expression values, informed by an image segment showing the surface of a small tissue biopsy. RESULTS: The SNN was able to predict the functional expression of a range of functions based with error ranging from ∼5% to ∼30%, with functions that are most closely associated with the early state of wound healing to be those best-predicted. CONCLUSIONS: These initial results suggest promise for further research regarding this novel use of machine learning regression on medical images. The regression of functional profiles, as opposed to specific genes, both addresses the challenge of genetic redundancy and gives a deeper insight into the mechanistic configuration of a region of tissue in wounds.


Subject(s)
Artificial Intelligence , Wound Healing , Animals , Dogs , Pilot Projects , Neural Networks, Computer , Biopsy , Muscle, Skeletal/pathology
3.
medRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711488

ABSTRACT

Long COVID is recognized as a significant consequence of SARS-COV2 infection. While the pathogenesis of Long COVID is still a subject of extensive investigation, there is considerable potential benefit in being able to predict which patients will develop Long COVID. We hypothesize that there would be distinct differences in the prediction of Long COVID based on the severity of the index infection, and use whether the index infection required hospitalization or not as a proxy for developing predictive models. We divide a large population of COVID patients drawn from the United States National Institutes of Health (NIH) National COVID Cohort Collaborative (N3C) Data Enclave Repository into two cohorts based on the severity of their initial COVID-19 illness and correspondingly trained two machine learning models: the Long COVID after Severe Disease Model (LCaSDM) and the Long COVID after Mild Disease Model (LCaMDM). The resulting models performed well on internal validation/testing, with a F1 score of 0.94 for the LCaSDM and 0.82 for the LCaMDM. There were distinct differences in the top 10 features used by each model, possibly reflecting the differences in type and amount of pathophysiological data between the hospitalized and non-hospitalized patients and/or reflecting different pathophysiological trajectories in the development of Long COVID. Of particular interest was the importance of Plant Hardiness Zone in the feature set for the LCaMDM, which may point to a role of climate and/or sunlight in the progression to Long COVID. Future work will involve a more detailed investigation of the potential role of climate and sunlight, as well as refinement of the predictive models as Long COVID becomes increasingly parsed into distinct clinical phenotypes.

4.
PLoS Negl Trop Dis ; 16(12): e0010943, 2022 12.
Article in English | MEDLINE | ID: mdl-36477293

ABSTRACT

BACKGROUND: Though significant progress in disease elimination has been made over the past decades, trachoma is the leading infectious cause of blindness globally. Further efforts in trachoma elimination are paradoxically being limited by the relative rarity of the disease, which makes clinical training for monitoring surveys difficult. In this work, we evaluate the plausibility of an Artificial Intelligence model to augment or replace human image graders in the evaluation/diagnosis of trachomatous inflammation-follicular (TF). METHODS: We utilized a dataset consisting of 2300 images with a 5% positivity rate for TF. We developed classifiers by implementing two state-of-the-art Convolutional Neural Network architectures, ResNet101 and VGG16, and applying a suite of data augmentation/oversampling techniques to the positive images. We then augmented our data set with additional images from independent research groups and evaluated performance. RESULTS: Models performed well in minimizing the number of false negatives, given the constraint of the low numbers of images in which TF was present. The best performing models achieved a sensitivity of 95% and positive predictive value of 50-70% while reducing the number images requiring skilled grading by 66-75%. Basic oversampling and data augmentation techniques were most successful at improving model performance, while techniques that are grounded in clinical experience, such as highlighting follicles, were less successful. DISCUSSION: The developed models perform well and significantly reduce the burden on graders by minimizing the number of false negative identifications. Further improvements in model skill will benefit from data sets with more TF as well as a range in image quality and image capture techniques used. While these models approach/meet the community-accepted standard for skilled field graders (i.e., Cohen's Kappa >0.7), they are insufficient to be deployed independently/clinically at this time; rather, they can be utilized to significantly reduce the burden on skilled image graders.


Subject(s)
Trachoma , Humans , Trachoma/diagnosis , Artificial Intelligence , Machine Learning , Neural Networks, Computer , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...