Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Open Forum Infect Dis ; 9(1): ofab643, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35036469

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are highly antibiotic-resistant bacteria. Whether CRE resistant only to ertapenem among carbapenems (ertapenem "mono-resistant") represent a unique CRE subset with regards to risk factors, carbapenemase genes, and outcomes is unknown. METHODS: We analyzed surveillance data from 9 CDC Emerging Infections Program (EIP) sites. A case was the first isolation of a carbapenem-resistant Enterobacter cloacae complex, Escherichia coli, Klebsiella aerogenes, K. oxytoca, K. pneumoniae, or K. variicola from a normally sterile site or urine in an EIP catchment area resident in 2016-2017. We compared risk factors, carbapenemase genes, antibiotic susceptibility, and mortality of ertapenem "mono-resistant" cases to "other" CRE cases (resistant to ≥1 carbapenem other than ertapenem) and analyzed risk factors for mortality. RESULTS: Of 2009 cases, 1249 (62.2%) were ertapenem-mono-resistant and 760 (37.8%) were other CRE. Ertapenem-mono-resistant CRE cases were more frequently ≥80 years old (29.1% vs 19.5%; P < .0001) and female (67.9% vs 59.0%; P < .0001). Ertapenem-mono-resistant isolates were more likely to be Enterobacter cloacae complex (48.4% vs 15.4%; P < .0001) but less likely to be isolated from a normally sterile site (7.1% vs 11.7%; P < .01) or to have a carbapenemase gene (2.4% vs 47.4%; P < .0001). Ertapenem-mono-resistance was not associated with 90-day mortality in logistic regression models. Carbapenemase-positive isolates were associated with mortality (odds ratio, 1.93; 95% CI, 1.30-2.86). CONCLUSIONS: Ertapenem-mono-resistant CRE rarely have carbapenemase genes and have distinct clinical and microbiologic characteristics from other CRE. These findings may inform antibiotic choice and infection prevention practices, particularly when carbapenemase testing is not available.

2.
Am J Infect Control ; 49(7): 874-878, 2021 07.
Article in English | MEDLINE | ID: mdl-33493538

ABSTRACT

BACKGROUND: Catheter-associated urinary tract infections (CAUTI) and central line-associated bloodstream infections (CLABSI) represent a substantial portion of health care-associated infections (HAIs) reported in the United States. The Targeted Assessment for Prevention Strategy is a quality improvement framework to reduce health care-associated infections. Data from the Targeted Assessment for Prevention Facility Assessments were used to determine common infection prevention gaps for CAUTI and CLABSI. METHODS: Data from 2,044 CAUTI and 1,680 CLABSI assessments were included in the analysis. Items were defined as potential gaps if ≥33% respondents answered Unknown, ≥33% No, or ≥50% No or Unknown or Never, Rarely, Sometimes, or Unknown to questions pertaining to those areas. Review of response frequencies and stratification by respondent role were performed to highlight opportunities for improvement. RESULTS: Across CAUTI and CLABSI assessments, lack of physician champions (<35% Yes) and nurse champions (<55% Yes), along with lack of awareness of competency assessments, audits, and feedback were reported. Lack of practices to facilitate timely removal of urinary catheters were identified for CAUTI and issues with select device insertion practices, such as maintaining aseptic technique, were perceived as areas for improvement for CLABSI. CONCLUSIONS: These data suggest common gaps in critical components of infection prevention and control programs. The identification of these gaps has the potential to inform targeted CAUTI and CLABSI prevention efforts.


Subject(s)
Catheter-Related Infections , Cross Infection , Sepsis , Urinary Tract Infections , Catheter-Related Infections/epidemiology , Catheter-Related Infections/prevention & control , Cross Infection/prevention & control , Humans , Sepsis/epidemiology , Sepsis/prevention & control , United States , Urinary Catheters , Urinary Tract Infections/epidemiology , Urinary Tract Infections/prevention & control
3.
MMWR Morb Mortal Wkly Rep ; 66(22): 584-589, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28594788

ABSTRACT

BACKGROUND: Legionnaires' disease, a severe pneumonia, is typically acquired through inhalation of aerosolized water containing Legionella bacteria. Legionella can grow in the complex water systems of buildings, including health care facilities. Effective water management programs could prevent the growth of Legionella in building water systems. METHODS: Using national surveillance data, Legionnaires' disease cases were characterized from the 21 jurisdictions (20 U.S. states and one large metropolitan area) that reported exposure information for ≥90% of 2015 Legionella infections. An assessment of whether cases were health care-associated was completed; definite health care association was defined as hospitalization or long-term care facility residence for the entire 10 days preceding symptom onset, and possible association was defined as any exposure to a health care facility for a portion of the 10 days preceding symptom onset. All other Legionnaires' disease cases were considered unrelated to health care. RESULTS: A total of 2,809 confirmed Legionnaires' disease cases were reported from the 21 jurisdictions, including 85 (3%) definite and 468 (17%) possible health care-associated cases. Among the 21 jurisdictions, 16 (76%) reported 1-21 definite health care-associated cases per jurisdiction. Among definite health care-associated cases, the majority (75, 88%) occurred in persons aged ≥60 years, and exposures occurred at 72 facilities (15 hospitals and 57 long-term care facilities). The case fatality rate was 25% for definite and 10% for possible health care-associated Legionnaires' disease. CONCLUSIONS AND IMPLICATIONS FOR PUBLIC HEALTH PRACTICE: Exposure to Legionella from health care facility water systems can result in Legionnaires' disease. The high case fatality rate of health care-associated Legionnaires' disease highlights the importance of case prevention and response activities, including implementation of effective water management programs and timely case identification.


Subject(s)
Cross Infection/epidemiology , Health Facilities/statistics & numerical data , Legionnaires' Disease/epidemiology , Population Surveillance , Water Microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , United States/epidemiology , Young Adult
4.
Am J Trop Med Hyg ; 93(2): 238-40, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26033024

ABSTRACT

Leptospirosis is a potentially severe illness in returned travelers. Patients often present with fever, headache, and neck pain, which may lead to a workup for meningitis including the acquisition of cerebrospinal fluid (CSF). Although Leptospira DNA has been detected in CSF by polymerase chain reaction (PCR), little data exist regarding the utility of testing CSF in addition to serum or plasma obtained on presentation. In this report, we present two cases of leptospirosis in returned travelers presenting with fever and headache. Our first patient had neutrophilic meningitis, and Leptospira was detectable only in CSF obtained on admission. The second patient had a normal CSF profile, but Leptospira was detected in CSF at a bacterial load 5- to 10-fold higher than that in plasma. CSF is an important specimen for the diagnosis of Leptospira by molecular methods and may yield an actionable diagnosis in the absence of leptospiremia.


Subject(s)
Bacterial Load , DNA, Bacterial/blood , DNA, Bacterial/cerebrospinal fluid , Leptospirosis/blood , Leptospirosis/cerebrospinal fluid , Leptospirosis/diagnosis , Adult , Fever , Headache , Humans , Leptospira/isolation & purification , Male , Polymerase Chain Reaction , Young Adult
5.
Clin Infect Dis ; 57(8): 1182-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23839998

ABSTRACT

Emerging viral pathogens include newly discovered viruses as well as previously known viruses that are either increasing, or threatening to increase in incidence. While often first identified in the general population, they may affect transplant recipients, in whom their manifestations may be atypical or more severe. Enhanced molecular methods have increased the rate of viral discovery but have not overcome the problem of demonstrating pathogenicity. At the same time, improved clinical diagnostic methods have increased the detection of reemerging viruses in immunocompromised patients. In this review, we first discuss viral diagnostics and the developing field of viral discovery and then focus on rare and emerging viruses in the transplant population: human T-cell leukemia virus type 1; hepatitis E virus; bocavirus; KI and WU polyomaviruses; coronaviruses HKU1 and NL63; influenza, H1N1; measles; dengue; rabies; and lymphocytic choriomeningitis virus. Detection and reporting of such rare pathogens in transplant recipients is critical to patient care and improving our understanding of posttransplant infections.


Subject(s)
Communicable Diseases, Emerging/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Organ Transplantation/adverse effects , Virus Diseases/etiology , Communicable Diseases, Emerging/virology , Humans , Postoperative Complications/virology , Virus Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...