Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 433, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693476

ABSTRACT

BACKGROUND: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.


Subject(s)
Dengue Virus , Genome, Viral , Serogroup , Whole Genome Sequencing , Dengue Virus/genetics , Dengue Virus/isolation & purification , Dengue Virus/classification , Whole Genome Sequencing/methods , Humans , Genotype , Dengue/virology , Dengue/diagnosis , High-Throughput Nucleotide Sequencing/methods , RNA, Viral/genetics
2.
Nat Commun ; 15(1): 3508, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664380

ABSTRACT

Dengue is the most prevalent mosquito-borne viral disease in humans, and cases are continuing to rise globally. In particular, islands in the Caribbean have experienced more frequent outbreaks, and all four dengue virus (DENV) serotypes have been reported in the region, leading to hyperendemicity and increased rates of severe disease. However, there is significant variability regarding virus surveillance and reporting between islands, making it difficult to obtain an accurate understanding of the epidemiological patterns in the Caribbean. To investigate this, we used travel surveillance and genomic epidemiology to reconstruct outbreak dynamics, DENV serotype turnover, and patterns of spread within the region from 2009-2022. We uncovered two recent DENV-3 introductions from Asia, one of which resulted in a large outbreak in Cuba, which was previously under-reported. We also show that while outbreaks can be synchronized between islands, they are often caused by different serotypes. Our study highlights the importance of surveillance of infected travelers to provide a snapshot of local introductions and transmission in areas with limited local surveillance and suggests that the recent DENV-3 introductions may pose a major public health threat in the region.


Subject(s)
Dengue Virus , Dengue , Disease Outbreaks , Serogroup , Travel , Dengue Virus/genetics , Dengue Virus/classification , Dengue Virus/isolation & purification , Dengue/epidemiology , Dengue/virology , Dengue/transmission , Humans , Caribbean Region/epidemiology , Travel/statistics & numerical data , Phylogeny , Epidemiological Monitoring
3.
medRxiv ; 2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37986857

ABSTRACT

Dengue is the most prevalent mosquito-borne viral disease in humans, and cases are continuing to rise globally. In particular, islands in the Caribbean have experienced more frequent outbreaks, and all four dengue virus (DENV) serotypes have been reported in the region, leading to hyperendemicity and increased rates of severe disease. However, there is significant variability regarding virus surveillance and reporting between islands, making it difficult to obtain an accurate understanding of the epidemiological patterns in the Caribbean. To investigate this, we used travel surveillance and genomic epidemiology to reconstruct outbreak dynamics, DENV serotype turnover, and patterns of spread within the region from 2009-2022. We uncovered two recent DENV-3 introductions from Asia, one of which resulted in a large outbreak in Cuba, which was previously under-reported. We also show that while outbreaks can be synchronized between islands, they are often caused by different serotypes. Our study highlights the importance of surveillance of infected travelers to provide a snapshot of local introductions and transmission in areas with limited local surveillance and suggests that the recent DENV-3 introductions may pose a major public health threat in the region.

4.
medRxiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37873191

ABSTRACT

Background: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. Results: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 101-102 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. Conclusions: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.

5.
bioRxiv ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37808797

ABSTRACT

Diverse mammalian species display susceptibility to and infection with SARS-CoV-2. Potential SARS-CoV-2 spillback into rodents is understudied despite their host role for numerous zoonoses and human proximity. We assessed exposure and infection among white-footed mice (Peromyscus leucopus) in Connecticut, USA. We observed 1% (6/540) wild-type neutralizing antibody seroprevalence among 2020-2022 residential mice with no cross-neutralization of variants. We detected no SARS-CoV-2 infections via RT-qPCR, but identified non-SARS-CoV-2 betacoronavirus infections via pan-coronavirus PCR among 1% (5/468) of residential mice. Sequencing revealed two divergent betacoronaviruses, preliminarily named Peromyscus coronavirus-1 and -2. Both belong to the Betacoronavirus 1 species and are ~90% identical to the closest known relative, Porcine hemagglutinating encephalomyelitis virus. Low SARS-CoV-2 seroprevalence suggests white-footed mice may not be sufficiently susceptible or exposed to SARS-CoV-2 to present a long-term human health risk. However, the discovery of divergent, non-SARS-CoV-2 betacoronaviruses expands the diversity of known rodent coronaviruses and further investigation is required to understand their transmission extent.

6.
Curr Biol ; 33(14): 3031-3040.e6, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37379844

ABSTRACT

Centrosomes are multi-protein organelles that function as microtubule (MT) organizing centers (MTOCs), ensuring spindle formation and chromosome segregation during cell division.1,2,3 Centrosome structure includes core centrioles that recruit pericentriolar material (PCM) that anchors γ-tubulin to nucleate MTs.1,2 In Drosophila melanogaster, PCM organization depends on proper regulation of proteins like Spd-2, which dynamically localizes to centrosomes and is required for PCM, γ-tubulin, and MTOC activity in brain neuroblast (NB) mitosis and male spermatocyte (SC) meiosis.4,5,6,7,8 Some cells have distinct requirements for MTOC activity due to differences in characteristics like cell size9,10 or whether they are mitotic or meiotic.11,12 How centrosome proteins achieve cell-type-specific functional differences is poorly understood. Previous work identified alternative splicing13 and binding partners14 as contributors to cell-type-specific differences in centrosome function. Gene duplication, which can generate paralogs with specialized functions,15,16 is also implicated in centrosome gene evolution,17 including cell-type-specific centrosome genes.18,19 To gain insight into cell-type-specific differences in centrosome protein function and regulation, we investigated a duplication of Spd-2 in Drosophila willistoni, which has Spd-2A (ancestral) and Spd-2B (derived). We find that Spd-2A functions in NB mitosis, whereas Spd-2B functions in SC meiosis. Ectopically expressed Spd-2B accumulates and functions in mitotic NBs, but ectopically expressed Spd-2A failed to accumulate in meiotic SCs, suggesting cell-type-specific differences in translation or protein stability. We mapped this failure to accumulate and function in meiosis to the C-terminal tail domain of Spd-2A, revealing a novel regulatory mechanism that can potentially achieve differences in PCM function across cell types.


Subject(s)
Cytoskeletal Proteins , Drosophila Proteins , Drosophila , Gene Duplication , Tubulin , Animals , Male , Centrioles/genetics , Centrioles/metabolism , Centrosome/metabolism , Drosophila/genetics , Drosophila/metabolism , Meiosis , Mitosis , Tubulin/metabolism , Cytoskeletal Proteins/genetics , Drosophila Proteins/genetics
7.
Elife ; 92020 09 15.
Article in English | MEDLINE | ID: mdl-32930662

ABSTRACT

Host antiviral proteins engage in evolutionary arms races with viruses, in which both sides rapidly evolve at interaction interfaces to gain or evade immune defense. For example, primate TRIM5α uses its rapidly evolving 'v1' loop to bind retroviral capsids, and single mutations in this loop can dramatically improve retroviral restriction. However, it is unknown whether such gains of viral restriction are rare, or if they incur loss of pre-existing function against other viruses. Using deep mutational scanning, we comprehensively measured how single mutations in the TRIM5α v1 loop affect restriction of divergent retroviruses. Unexpectedly, we found that the majority of mutations increase weak antiviral function. Moreover, most random mutations do not disrupt potent viral restriction, even when it is newly acquired via a single adaptive substitution. Our results indicate that TRIM5α's adaptive landscape is remarkably broad and mutationally resilient, maximizing its chances of success in evolutionary arms races with retroviruses.


The evolutionary battle between viruses and the immune system is essentially a high-stakes arms race. The immune system makes antiviral proteins, called restriction factors, which can stop the virus from replicating. In response, viruses evolve to evade the effects of restriction factors. To counter this, restriction factors evolve too, and the cycle continues. The challenge for the immune system is that mammals do not evolve as fast as viruses. How then, in the face of this disadvantage, can the immune system hope to keep pace with viral evolution? One human antiviral protein that seems to have struggled to keep up is TRIM5α. In rhesus macaques, it is very effective at stopping the replication of HIV-1 and related viruses. But in humans, it is not effective at all. But why? Protein evolution happens due to small genetic mutations, but not every mutation makes a protein better. If a protein is resilient, it can tolerate lots of neutral or negative mutations without breaking, until it mutates in a way that makes it better. But, if a protein is fragile, even small changes can render it completely unable to do its job. It is possible that restriction factors, like TRIM5α, are evolutionarily 'fragile', and therefore easy to break. But it is difficult to test whether this is the case, because existing mutations have already passed the test of natural selection. This means that either the mutation is somehow useful for the protein, or that it is not harmful enough to be removed. Tenthorey et al. devised a way to introduce all possible changes to the part of TRIM5α that binds to viruses. This revealed that TRIM5α is not fragile; most random mutations increased, rather than decreased, the protein's ability to prevent viral infection. In fact, it appears it would only take a single mutation to make TRIM5α better at blocking HIV-1 in humans, and there are many possible single mutations that would work. Thus, it would appear that human TRIM5α can easily gain the ability to block HIV-1. The next step was to find out whether these gains in antiviral activity are just as easily lost. To do this, Tenthorey et al. performed the same tests on TRIM5α from rhesus macaques and an HIV-blocking mutant version of human TRIM5α. This showed that the majority of random mutations do not break TRIM5α's virus-blocking ability. Thus, TRIM5α can readily gain antiviral activity and, once gained, does not lose it easily during subsequent mutation. Antiviral proteins like TRIM5α engage in uneven evolutionary battles with fast-evolving viruses. But, although they are resilient and able to evolve, they are not always able to find the right mutations on their own. Experiments like these suggest that it might be possible to give them a helping hand. Identifying mutations that help human TRIM5α to strongly block HIV-1 could pave the way for future gene therapy. This step would demand significant advances in gene therapy efficacy and safety, but it could offer a new way to block virus infection in the future.


Subject(s)
Catarrhini/genetics , Host-Pathogen Interactions , Mutation/genetics , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Antiviral Agents , Antiviral Restriction Factors , Cells, Cultured , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Retroviridae/immunology , Tripartite Motif Proteins/chemistry , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/immunology , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Ubiquitin-Protein Ligases/metabolism , Virus Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...