Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 21(3): 311-316, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34949813

ABSTRACT

The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions.

2.
Phys Rev Lett ; 123(24): 246602, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31922840

ABSTRACT

Electrons moving in a Bloch band are known to acquire an anomalous Hall velocity proportional to the Berry curvature of the band which is responsible for the intrinsic linear Hall effect in materials with broken time-reversal symmetry. Here, we demonstrate that there is also an anomalous correction to the electron acceleration which is proportional to the Berry curvature dipole and is responsible for the nonlinear Hall effect recently discovered in materials with broken inversion symmetry. This allows us to uncover a deeper meaning of the Berry curvature dipole as a nonlinear version of the Drude weight that serves as a measurable order parameter for broken inversion symmetry in metals. We also derive a quantum rectification sum rule in time reversal invariant materials by showing that the integral over frequency of the rectification conductivity depends solely on the Berry connection and not on the band energies. The intraband spectral weight of this sum rule is exhausted by the Berry curvature dipole Drude-like peak, and the interband weight is also entirely controlled by the Berry connection. This sum rule opens a door to search for alternative photovoltaic technologies based on the Berry geometry of bands. We also describe the rectification properties of Weyl semimetals which are a promising platform to investigate these effects.

3.
Phys Rev Lett ; 112(12): 126804, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24724669

ABSTRACT

We describe a variational theory for incompressible ground states and charge gaps in the N=0 Landau level of graphene that accounts for the fourfold Landau level degeneracy and the short-range interactions that break SU(4) spin-valley invariance. Our approach explains the experimental finding that gaps at odd numerators are weak for 1<|ν|<2 and strong for 0<|ν|<1. We find that in the SU(4) invariant case the incompressible ground state at |ν|=1/3 is a three-component incompressible state, not the Laughlin state, and discuss the competition between these two states in the presence of SU(4) spin-valley symmetry-breaking terms.

SELECTION OF CITATIONS
SEARCH DETAIL
...