Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Psychiatry Res ; 213(2): 161-8, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23769420

ABSTRACT

Children with prenatal exposure to cocaine are at higher risk for negative behavioral function and attention difficulties, and have demonstrated brain diffusion abnormalities in frontal white matter regions. However, brain regions beyond frontal and callosal areas have not been investigated using diffusion tensor imaging (DTI). DTI data were collected on 42 youth aged 14-16 years; subjects were divided into three groups based on detailed exposure histories: those with prenatal exposure to cocaine but not alcohol (prenatal cocaine exposure (PCE), n=12), prenatal exposure to cocaine and alcohol (cocaine and alcohol exposure (CAE), n=17), and controls (n=13). Tractography was performed and along-tract diffusion parameters were examined for group differences and correlations with executive function measures. In the right arcuate fasciculus and cingulum, the CAE group had higher fractional anisotropy (FA) and/or lower mean diffusivity (MD) than the other two groups. The PCE group demonstrated lower FA in the right arcuate and higher MD in the splenium of the corpus callosum than controls. Diffusion parameters in tracts with group differences correlated with measures of executive function. In conclusion, these diffusion differences in adolescents with prenatal cocaine exposure suggest localized, long-term structural brain alterations that may underlie attention and response-inhibition difficulties.


Subject(s)
Cocaine/toxicity , Executive Function/drug effects , Nerve Fibers, Myelinated/pathology , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/psychology , Adolescent , Adult , Anisotropy , Arcuate Nucleus of Hypothalamus/pathology , Case-Control Studies , Corpus Callosum/pathology , Diffusion Tensor Imaging , Ethanol/toxicity , Female , Gyrus Cinguli/pathology , Humans , Male , Neuroimaging , Pregnancy
2.
J Neurodev Disord ; 4(1): 22, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22958316

ABSTRACT

BACKGROUND: Published structural neuroimaging studies of prenatal cocaine exposure (PCE) in humans have yielded somewhat inconsistent results, with several studies reporting no significant differences in brain structure between exposed subjects and controls. Here, we sought to clarify some of these discrepancies by applying methodologies that allow for the detection of subtle alterations in brain structure. METHODS: We applied surface-based anatomical modeling methods to magnetic resonance imaging (MRI) data to examine regional changes in the shape and volume of the caudate and putamen in adolescents with prenatal cocaine exposure (n = 40, including 28 exposed participants and 12 unexposed controls, age range 14 to 16 years). We also sought to determine whether changes in regional brain volumes in frontal and subcortical regions occurred in adolescents with PCE compared to control participants. RESULTS: The overall volumes of the caudate and putamen did not significantly differ between PCE participants and controls. However, we found significant (P <0.05, uncorrected) effects of levels of prenatal exposure to cocaine on regional patterns of striatal morphology. Higher levels of prenatal cocaine exposure were associated with expansion of certain striatal subregions and with contraction in others. Volumetric analyses revealed no significant changes in the volume of any subcortical region of interest, but there were subtle group differences in the volumes of some frontal cortical regions, in particular reduced volumes of caudal middle frontal cortices and left lateral orbitofrontal cortex in exposed participants compared to controls. CONCLUSIONS: Prenatal cocaine exposure may lead to subtle and regionally specific patterns of regional dysmorphology in the striatum and volumetric changes in the frontal lobes. The localized and bidirectional nature of effects may explain in part the contradictions in the existing literature.

3.
Neuroimage ; 59(4): 3227-42, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22094644

ABSTRACT

Diffusion imaging tractography is a valuable tool for neuroscience researchers because it allows the generation of individualized virtual dissections of major white matter tracts in the human brain. It facilitates between-subject statistical analyses tailored to the specific anatomy of each participant. There is prominent variation in diffusion imaging metrics (e.g., fractional anisotropy, FA) within tracts, but most tractography studies use a "tract-averaged" approach to analysis by averaging the scalar values from the many streamline vertices in a tract dissection into a single point-spread estimate for each tract. Here we describe a complete workflow needed to conduct an along-tract analysis of white matter streamline tract groups. This consists of 1) A flexible MATLAB toolkit for generating along-tract data based on B-spline resampling and compilation of scalar data at different collections of vertices along the curving tract spines, and 2) Statistical analysis and rich data visualization by leveraging tools available through the R platform for statistical computing. We demonstrate the effectiveness of such an along-tract approach over the tract-averaged approach in an example analysis of 10 major white matter tracts in a single subject. We also show that these techniques easily extend to between-group analyses typically used in neuroscience applications, by conducting an along-tract analysis of differences in FA between 9 individuals with fetal alcohol spectrum disorders (FASDs) and 11 typically-developing controls. This analysis reveals localized differences between FASD and control groups that were not apparent using a tract-averaged method. Finally, to validate our approach and highlight the strength of this extensible software framework, we implement 2 other methods from the literature and leverage the existing workflow tools to conduct a comparison study.


Subject(s)
Brain Mapping/methods , Fetal Alcohol Spectrum Disorders/diagnosis , Functional Neuroimaging/methods , Image Enhancement/methods , Adolescent , Anisotropy , Female , Humans , Male
4.
Neuropsychol Rev ; 20(4): 376-97, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20978945

ABSTRACT

Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse.


Subject(s)
Brain , Diagnostic Imaging , Prenatal Exposure Delayed Effects , Substance-Related Disorders/complications , Brain/abnormalities , Brain/metabolism , Brain/pathology , Brain Mapping , Diagnostic Imaging/classification , Female , Functional Laterality , Humans , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...