Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 262: 124695, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37229813

ABSTRACT

We developed a novel, compact, three-dimensional electrochemical paper-based analytical device (3D-ePAD) for patulin (PT) determination. The selective and sensitive PT-imprinted Origami 3D-ePAD was constructed based on a graphene screen-printed electrode modified with manganese-zinc sulfide quantum dots coated with patulin imprinted polymer (Mn-ZnS QDs@PT-MIP/GSPE). The Mn-ZnS QDs@PT-MIP was synthesized using 2-oxindole as the template, methacrylic acid (MAA) as a monomer, N,N'-(1,2-dihydroxyethylene) bis (acrylamide) (DHEBA) as cross-linker and 2,2'-azobis (2-methylpropionitrile) (AIBN) as initiator, respectively. The Origami 3D-ePAD was designed with hydrophobic barrier layers formed on filter paper to provide three-dimensional circular reservoirs and assembled electrodes. The synthesized Mn-ZnS QDs@PT-MIP was quickly loaded on the electrode surface by mixing with graphene ink and then screen-printing on the paper. The PT-imprinted sensor provides the greatest enhancement in redox response and electrocatalytic activity, which we attributed to synergetic effects. This arose from an excellent electrocatalytic activity and good electrical conductivity of Mn-ZnS QDs@PT-MIP, which improved electron transfer between PT and the electrode surface. Under the optimized DPV conditions, a well-defined PT oxidation peak appears at +0.15 V (vs Ag/AgCl) using 0.1 M of phosphate buffer (pH 6.5) containing 5 mM K3Fe(CN)6 as the supporting electrolyte. Our developed PT imprinted Origami 3D-ePAD revealed excellent linear dynamic ranges of 0.001-25 µM, with a detection limit of 0.2 nM. Detection performance indicated that our Origami 3D-ePAD possesses outstanding detection performance from fruits and CRM in terms of high accuracy (%Error for inter-day is 1.11%) and precision (%RSD less than 4.1%). Therefore, the proposed method is well-suited as an alternative platform for ready-to-use sensors in food safety. The imprinted Origami 3D-ePAD is an excellent disposable device with a simple, cost-effective, and fast analysis, and it is ready to use for determining patulin in actual samples.

2.
Anal Chim Acta ; 1076: 64-72, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31203965

ABSTRACT

A new and facile method for selective measurement of profenofos (PFF) using a simple flow-injection system with a molecularly-imprinted-polymer-coated carbon nanotube (3D-CNTs@MIP) amperometric sensor is proposed. The 3D-CNTs@MIP was synthesized by successively coating the surface of carboxylated CNTs with SiO2 and vinyl end groups, then terminating with molecularly imprinted polymer (MIP) shells. MIP was grafted to the CNT cores using methacrylic acid (MAA) monomer, ethylene glycol dimethacrylate (EGDMA) as cross linker, and 2,2'-azobisisobutyronitrile (AIBN) as initiator. We constructed the PFF sensor by coating the surface of a glassy carbon electrode (GCE) with 3D-CNTs@MIP and removed the imprinting template by solvent extraction. Morphological and structural characterization reveal that blending of the MIP on the CNT surface significantly increases the selective surface area, leading to greater numbers of imprinting sites for improved sensitivity and electron transfer. The 3D-CNTs@MIP sensor exhibits a fast response with good recognition when applied to PFF detection by cyclic voltammetry and amperometry. The PFF oxidation current signal appears at +0.7 V vs Ag/AgCl using 0.1 M phosphate buffer (pH 7.0) as the carrier solution. The designed 3D-imprinted sensor provides a linear response over the range 0.01-200 µM (r2 = 0.995) with a low detection limit of 0.002 µM (3σ). The sensor was successfully applied to detection of PFF in vegetable samples.


Subject(s)
Food Contamination/analysis , Insecticides/analysis , Nanotubes, Carbon/chemistry , Organothiophosphates/analysis , Pesticide Residues/analysis , Polymers/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Molecular Imprinting , Nanocomposites/chemistry , Silicon Dioxide/chemistry , Vegetables/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...