Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol ; 7(7): 529-43, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10903932

ABSTRACT

BACKGROUND: Many plants respond to pathogenic attack by producing defense proteins that are capable of reversible binding to chitin, a polysaccharide present in the cell wall of fungi and the exoskeleton of insects. Most of these chitin-binding proteins include a common structural motif of 30 to 43 residues organized around a conserved four-disulfide core, known as the 'hevein domain' or 'chitin-binding' motif. Although a number of structural and thermodynamic studies on hevein-type domains have been reported, these studies do not clarify how chitin recognition is achieved. RESULTS: The specific interaction of hevein with several (GlcNAc)(n) oligomers has been studied using nuclear magnetic resonance (NMR), analytical ultracentrifugation and isothermal titration microcalorimetry (ITC). The data demonstrate that hevein binds (GlcNAc)(2-4) in 1:1 stoichiometry with millimolar affinity. In contrast, for (GlcNAc)(5), a significant increase in binding affinity is observed. Analytical ultracentrifugation studies on the hevein-(GlcNAc)(5,8) interaction allowed detection of protein-carbohydrate complexes with a ratio of 2:1 in solution. NMR structural studies on the hevein-(GlcNAc)(5) complex showed the existence of an extended binding site with at least five GlcNAc units directly involved in protein-sugar contacts. CONCLUSIONS: The first detailed structural model for the hevein-chitin complex is presented on the basis of the analysis of NMR data. The resulting model, in combination with ITC and analytical ultracentrifugation data, conclusively shows that recognition of chitin by hevein domains is a dynamic process, which is not exclusively restricted to the binding of the nonreducing end of the polymer as previously thought. This allows chitin to bind with high affinity to a variable number of protein molecules, depending on the polysaccharide chain length. The biological process is multivalent.


Subject(s)
Acetylglucosamine/chemistry , Antimicrobial Cationic Peptides , Chitin/chemistry , Lectins/chemistry , Plant Lectins , Plant Proteins/chemistry , Protein Structure, Tertiary , Acetylglucosamine/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites/physiology , Calorimetry , Carbohydrate Conformation , Carbohydrate Sequence , Chitin/analogs & derivatives , Chitin/metabolism , Hydrogen Bonding , Lectins/isolation & purification , Lectins/metabolism , Ligands , Microchemistry , Molecular Sequence Data , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Thermodynamics , Ultracentrifugation
2.
Proteins ; 40(2): 218-36, 2000 Aug 01.
Article in English | MEDLINE | ID: mdl-10842338

ABSTRACT

Model studies on lectins and their interactions with carbohydrate ligands in solution are essential to gain insights into the driving forces for complex formation and to optimize programs for computer simulations. The specific interaction of pseudohevein with N,N', N"-triacetylchitotriose has been analyzed by (1)H-NMR spectroscopy. Because of its small size, with a chain length of 45 amino acids, this lectin is a prime target to solution-structure determination by NOESY NMR experiments in water. The NMR-analysis was extended to assessment of the topology of the complex between pseudohevein and N, N',N"-triacetylchitotriose. NOESY experiments in water solution provided 342 protein proton-proton distance constraints. Binding of the ligand did not affect the pattern of the protein nuclear Overhauser effect signal noticeably, what would otherwise be indicative of a ligand-induced conformational change. The average backbone (residues 3-41) RMSD of the 20 refined structures was 1.14 A, whereas the heavy atom RMSD was 2.18 A. Two different orientations of the trisaccharide within the pseudohevein binding site are suggested, furnishing an explanation in structural terms for the lectin's capacity to target chitin. In both cases, hydrogen bonds and van der Waals contacts confer stability to the complexes. This conclusion is corroborated by the thermodynamic parameters of binding determined by NMR and isothermal titration calorimetry. The association process was enthalpically driven. In relation to hevein, the Trp/Tyr-substitution in the binding pocket has only a small effect on the free energy of binding in contrast to engineered galectin-1 and a mammalian C-type lectin. A comparison of the three-dimensional structure of pseudohevein in solution to those reported for wheat germ agglutinin (WGA) in the solid state and for hevein and WGA-B in solution has been performed, providing a data source about structural variability of the hevein domains. The experimentally derived structures and the values of the solvent accessibilities for several key residues have also been compared with conformations obtained by molecular dynamics simulations, pointing to the necessity to further refine the programs to enhance their predictive reliability and, thus, underscoring the importance of this kind of combined analysis in model systems.


Subject(s)
Antimicrobial Cationic Peptides , Carbohydrate Metabolism , Lectins/chemistry , Plant Lectins , Plant Proteins/chemistry , Proteins/metabolism , Trisaccharides/chemistry , Amino Acid Sequence , Binding Sites , Calorimetry , Carbohydrate Sequence , Carbohydrates/chemistry , Dose-Response Relationship, Drug , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Proteins/chemistry , Sequence Homology, Amino Acid , Temperature , Thermodynamics , Tryptophan/chemistry , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...