Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 82(2): 622-632, 2019 08.
Article in English | MEDLINE | ID: mdl-30927313

ABSTRACT

PURPOSE: Relaxation-compensated CEST-MRI (i.e., the inverse metrics magnetization transfer ratio and apparent exchange-dependent relaxation) has already been shown to provide valuable information for brain tumor diagnosis at ultrahigh magnetic field strengths. This study aims at translating the established acquisition protocol at 7 T to a clinically relevant magnetic field strength of 3 T. METHODS: Protein model solutions were analyzed at multiple magnetic field strengths to assess the spectral widths of the amide proton transfer and relayed nuclear Overhauser effect (rNOE) signals at 3 T. This prior knowledge of the spectral range of CEST signals enabled a reliable and stable Lorentzian-fitting also at 3 T where distinct peaks are no longer resolved in the Z-spectrum. In comparison to the established acquisition protocol at 7 T, also the image readout was extended to three dimensions. RESULTS: The observed spectral range of CEST signals at 3 T was approximately ±15 ppm. Final relaxation-compensated amide proton transfer and relayed nuclear Overhauser effect contrasts were in line with previous results at 7 T. Examination of a patient with glioblastoma demonstrated the applicability of this acquisition protocol in a clinical setting. CONCLUSION: The presented acquisition protocol allows relaxation-compensated CEST-MRI at 3 T with a 3D coverage of the human brain. Translation to a clinically relevant magnetic field strength of 3 T opens the door to trials with a large number of participants, thus enabling a comprehensive assessment of the clinical relevance of relaxation compensation in CEST-MRI.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Humans , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...