Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34577145

ABSTRACT

Chagas disease (CD) affects more than 6 million people worldwide. The available treatment is far from ideal, creating a demand for new alternative therapies. Botanical diversity provides a wide range of novel potential therapeutic scaffolds. Presently, our aim was to evaluate the mammalian host toxicity and anti-Trypanosoma cruzi activity of botanic natural products including extracts, fractions and purified compounds obtained from Brazilian flora. In this study, 36 samples of extracts and fractions and eight pure compounds obtained from seven plant species were evaluated. The fraction dichloromethane from Aureliana fasciculata var. fasciculata (AFfPD) and the crude extract of Piper tectoniifolium (PTFrE) showed promising trypanosomicidal activity. AFfPD and PTFrE presented EC50 values 10.7 ± 2.8 µg/mL and 12.85 ± 1.52 µg/mL against intracellular forms (Tulahuen strain), respectively. Additionally, both were active upon bloodstream trypomastigotes (Y strain), exhibiting EC50 2.2 ± 1.0 µg/mL and 38.8 ± 2.1 µg/mL for AFfPD and PTFrE, respectively. Importantly, AFfPD is about five-fold more potent than Benznidazole (Bz), the reference drug for CD, also reaching lower EC90 value (7.92 ± 2.2 µg/mL) as compared to Bz (23.3 ± 0.6 µg/mL). Besides, anti-parasitic effect of eight purified botanic substances was also investigated. Aurelianolide A and B (compounds 1 and 2) from A. fasciculata and compound 8 from P. tuberculatum displayed the best trypanosomicidal effect. Compounds 1, 2 and 8 showed EC50 of 4.6 ± 1.3 µM, 1.6 ± 0.4 µM and 8.1 ± 0.9 µM, respectively against intracellular forms. In addition, in silico analysis of these three biomolecules was performed to predict parameters of absorption, distribution, metabolism and excretion. The studied compounds presented similar ADMET profile as Bz, without presenting mutagenicity and hepatotoxicity aspects as predicted for Bz. Our findings indicate that these natural products have promising anti-T. cruzi effect and may represent new scaffolds for future lead optimization.


Subject(s)
Biodiversity , Biological Products , Trypanosoma cruzi , Brazil , Computer Simulation
2.
Br J Pharmacol ; 165(5): 1333-47, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21797847

ABSTRACT

BACKGROUND AND PURPOSE: Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ET(A)R and ET(B)R) and bradykinin B(2) receptors (B(2)R). EXPERIMENTAL APPROACH: Intravital microscopy was used to determine whether ETR/B(2)R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B(2)R (HOE-140), ET(A)R (BQ-123) and ET(B)R (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ET(A)R or ET(B)R genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS: BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ET(A)R and ET(B)R antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B(2)R, whereas RNA interference of ET(A)R and ET(B)R genes conversely reduced parasite internalization. ETRs/B(2)R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-ß-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin- or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells.


Subject(s)
Chagas Disease/metabolism , Chagas Disease/parasitology , Receptor, Bradykinin B2/metabolism , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Trypanosoma cruzi/metabolism , Animals , Bradykinin B2 Receptor Antagonists , CHO Cells , Calcium/metabolism , Cells, Cultured , Chagas Disease/immunology , Chagas Disease/pathology , Cricetinae , Edema/metabolism , Edema/pathology , Endothelin A Receptor Antagonists , Endothelin B Receptor Antagonists , Endothelin-1/metabolism , Human Umbilical Vein Endothelial Cells/parasitology , Humans , Inflammation/metabolism , Inflammation/pathology , Kinins/metabolism , Mice , Mice, Inbred BALB C , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Trypanosoma cruzi/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...