Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 159(19)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987519

ABSTRACT

Pheophytin a and chlorophyll a have been investigated by electrospray mass spectrometry in the positive and negative modes, in view of the importance of the knowledge of their properties in photosynthesis. Pheophytin and chlorophyll are both observed intensely in the protonated mode, and their main fragmentation route is the loss of their phytyl chain. Pheophytin is observed intact in the negative mode, while under collisions, it is primarily cleaved beyond the phytyl chain and loses the attaching propionate group. Chlorophyll is not detected in normal conditions in the negative mode, but addition of methanol solvent molecule is detected. Fragmentation of this adduct primarily forms a product (-30 amu) that dissociates into dephytyllated deprotonated chlorophyll. Semi-empirical molecular dynamics calculations show that the phytyl chain is unfolded from the chlorin cycle in pheophytin a and folded in chlorophyll a. Density functional theory calculations have been conducted to locate the charges on protonated and deprotonated pheophytin a and chlorophyll a and have found the major location sites that are notably more stable in energy by more than 0.5 eV than the others. The deprotonation site is found identical for pheophytin a and the chlorophyll a-methanol adduct. This is in line with experiment and calculation locating the addition of methanol on a double bond of deprotonated chlorophyll a.

2.
Phys Chem Chem Phys ; 25(22): 15555-15566, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37252735

ABSTRACT

We studied N 1s-1 inner-shell processes of the free base Phthalocyanine molecule, H2Pc, in the gas-phase. This complex organic molecule contains three different nitrogen sites defined by their covalent bonds. We identify the contribution of each site in ionized, core-shell excited or relaxed electronic states by the use of different theoretical methods. In particular, we present resonant Auger spectra along with a tentative new theoretical approach based on multiconfiguration self-consistent field calculations to simulate them. These calculations may pave the road towards resonant Auger spectroscopy in complex molecules.

3.
J Chem Phys ; 152(14): 144306, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295376

ABSTRACT

Triplet action spectra of two similar copper porphyrins, copper tetraphenylporphyrin (CuTPP) and copper octaethylporphyrin (CuOEP), have been studied in the gas phase at low temperatures in the absence of external perturbations by using a resonant pump and a 193 nm probe, ionizing the 3ππ* orbital localized on the porphyrin cycle. The molecules were prepared by laser desorption in a disk source, then cooled in a helium supersonic expansion, and finally excited in the Q band system (S1 ← S0). This type of experiment allows the spectroscopic characterization of large non-luminescent molecules in the absence of solvent perturbations. The two copper porphyrins exhibit a broad electronic origin Q00 absorption spectrum, partly caused by the short lifetime of the excited (S1) state. The two porphyrins differ strongly with a strong Q00 band for CuOEP and a weak one for CuTPP, in agreement with the Gouterman four-orbital model. The two molecules exhibit different solvent shifts: CuOEP is blue shifted in non-polar solvents owing to its alkyl substituents, while CuTPP is red shifted as for regular transitions to ππ* orbitals. The decay dynamics of the triplet state exhibit a collision-free lifetime of 70 ± 7 ns for CuTPP atop a microsecond decay. This non-exponential decay can be viewed as evidence of time evolution of two states combining the state with spin 1 borne by the porphyrin ring and that by the Cu atom 12. Therefore, this method allows solvent-free spectrodynamics of large molecules in a short microsecond time range.

4.
Phys Chem Chem Phys ; 20(45): 28658-28666, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30406771

ABSTRACT

A HElium Nanodroplet Isolation (HENDI) experiment was performed to explore the absorption spectra of the propyne monomer (CH3CCH), dimer and (CH3CCH)≥3 multimers in the vicinity of the CH stretch region ν1 of the monomer. Ab initio calculations were performed at the MP2 level to document the potential energy surface of the dimer. This provided the necessary parameters to simulate the absorption spectrum of the dimer and thus facilitate the interpretation of the experiment. The central result was to observe three isomers of the dimer, hence reflecting the complexity of the weak CHπ H-bonding when several H-donors are at play.

5.
Phys Chem Chem Phys ; 20(4): 2597-2605, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29318241

ABSTRACT

The CH antisymmetric stretch of the C2H2 moieties in acetylene dimers was explored over the range 3270-3290 cm-1 using the helium nanodroplet isolation (HENDI) technique. This work is part of a general investigation which addresses the dynamical consequences of coupling the deformation motions of weakly bound complexes with a finite size quantum liquid (the helium droplet). The acetylene dimer is attractive from this point of view because one of its deformation coordinates promotes a tunneling isomerization process. A numerical simulation of the observed spectrum allows deriving a set of effective spectroscopic constants which help understanding the dynamical role played by the droplet on the rotation and deformation of the dimer.

6.
Phys Chem Chem Phys ; 18(47): 32378-32386, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27858013

ABSTRACT

The dynamics of an electronically excited barium atom deposited at the surface of an Ar≈500 cluster was explored in a multipronged approach which associates information from frequency-resolved nanosecond experiments and information from femtosecond time-resolved experiments. In both types of experiments, the dynamics is monitored by photoelectron and photoion spectroscopy.

7.
Phys Chem Chem Phys ; 18(24): 16414-22, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27263427

ABSTRACT

Superfluid helium droplets provide an ideal environment for spectroscopic studies with rotational resolution. Nevertheless, the molecular rotation is hindered because the embedded molecules are surrounded by a non-superfluid component. The present work explores the dynamical role of this component in the hindered rotation of C2H2 within the C2H2-Ne complex. A HENDI experiment was built and near-infrared spectroscopy of C2H2-Ne and C2H2 was performed in the spectral region overlapping the ν3/ν2 + ν4 + ν5 Fermi-type resonance of C2H2. The comparison between measured and simulated spectra helped to address the above issue.

8.
J Phys Chem A ; 119(23): 6074-81, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25854161

ABSTRACT

We present a combined experimental and simulation study of the 4s → 4p photoexcitation of the K atom trapped at the surface of ArN clusters made of a few hundred Ar atoms. Our experimental method based on photoelectron spectroscopy allows us to firmly establish that one single K atom is trapped at the surface of the cluster. The absorption spectrum is characterized by the splitting of the atomic absorption line into two broad bands, a Π band associated with p orbitals parallel to the cluster surface and a Σ band associated with the perpendicular orientation. The spectrum is consistent with observations reported for K atoms trapped on lighter inert gas clusters, but the splitting between the Π and Σ bands is significantly larger. We show that a large amount of K atoms are transiently stuck and eventually lost by the Ar cluster, in contrast with previous observations reported for alkaline earth metal systems. The excitation in the Σ band leads systematically to the ejection of the K atom from the Ar cluster. On the contrary, excitation in the Π band leads to the formation of a bound state. In this case, the analysis of the experimental photoelectron spectrum by means of nonadiabatic molecular dynamics simulation shows that the relaxation drives the system toward a basin where the coordination of the K atom is 2.2 Ar atoms on the average, in a poorly structured surface.

9.
J Phys Chem A ; 119(23): 6099-110, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25766058

ABSTRACT

To study the excited state dynamics between a calcium atom and the CH3F molecule, a Ca···CH3F 1:1 complex has been prepared by a supersonic expansion with laser ablation of calcium metal in the gas phase. Tunable laser excitation of these complexes in molecular states correlating to Ca (1)P1(4s4p) + CH3F allows observing two competitive channels: the direct dissociation and the reactive channel into CaF* + CH3. The translational recoil, as well as the alignment of the fragments Ca* and CaF* have been analyzed by velocity map imaging and time-of-flight mass spectrometry. This revealed that both the dissociation and reaction processes are quasi direct and are of comparable intensity. We provide a simple interpretation for this process: the electronically excited potential surface of the Ca*···FCH3 complex initiates a fast predissociation from a suspended well to two repulsive surfaces that lead either to Ca (1)P1(4s4p) (Ω = 1) + CH3F or to CaF((2)Δ) + CH3.

10.
J Phys Chem A ; 119(23): 6045-56, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25656343

ABSTRACT

The S1((1)ππ*) state of the (dominant) syn-conformer of 2-chlorophenol (2-ClPhOH) in the gas phase has a subpicosecond lifetime, whereas the corresponding S1 states of 3- and 4-ClPhOH have lifetimes that are, respectively, ∼2 and ∼3-orders of magnitude longer. A range of experimental techniques-electronic spectroscopy, ultrafast time-resolved photoion and photoelectron spectroscopies, H Rydberg atom photofragment translational spectroscopy, velocity map imaging, and time-resolved Fourier transform infrared emission spectroscopy-as well as electronic structure calculations (of key regions of the multidimensional ground (S0) state potential energy surface (PES) and selected cuts through the first few excited singlet PESs) have been used in the quest to explain these striking differences in excited state lifetime. The intramolecular O-H···Cl hydrogen bond specific to syn-2-ClPhOH is key. It encourages partial charge transfer and preferential stabilization of the diabatic (1)πσ* potential (relative to that of the (1)ππ* state) upon stretching the C-Cl bond, with the result that initial C-Cl bond extension on the adiabatic S1 PES offers an essentially barrierless internal conversion pathway via regions of conical intersection with the S0 PES. Intramolecular hydrogen bonding is thus seen to facilitate the type of heterolytic dissociation more typically encountered in solution studies.

11.
J Phys Chem A ; 117(34): 8093-4, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23844661
12.
J Chem Phys ; 135(11): 114303, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21950858

ABSTRACT

The observation of the light absorption of neutral biomolecules has been made possible by a method implemented for their preparation in the gas phase, in supersonically cooled molecular beams, based upon the work of Focsa et al. [C. Mihesan, M. Ziskind, B. Chazallon, E. Therssen, P. Desgroux, S. Gurlui, and C. Focsa, Appl. Surf. Sci. 253, 1090 (2006)]. The biomolecules diluted in frozen water solutions are entrained in the gas plume of evaporated ice generated by an infrared optical parametric oscillators (OPO) laser tuned close to its maximum of absorption, at ~3 µm. The biomolecules are then picked up in the flux of a supersonic expansion of argon. The method was tested with indole dissolved in water. The excitation spectrum of indole was found cold and large clusters of indole with water were observed up to n = 75. Frozen spinach leaves were examined with the same method to observe the chlorophyll pigments. The Q(y) band of chlorophyll a has been observed in a pump probe experiment. The Q(y) bands of chlorophyll a is centred at 647 nm, shifted by 18 nm from its position in toluene solutions. The ionization threshold could also be determined as 6.1 ± 0.05 eV.


Subject(s)
Chlorophyll/chemistry , Plant Leaves/chemistry , Spinacia oleracea/chemistry , Chlorophyll A , Indoles/chemistry , Mass Spectrometry
13.
J Chem Phys ; 133(5): 054307, 2010 Aug 07.
Article in English | MEDLINE | ID: mdl-20707532

ABSTRACT

Ba(Ar)(approximately 750) clusters were generated by associating the supersonic expansion and the pick-up techniques. A femtosecond pump (266.3 nm)-probe (792 or 399.2 nm) experiment was performed to document the dynamics of electronically excited barium within the very multidimensional environment of the argon cluster. Barium was excited in the vicinity of the 6s9p (1)P state and probed by ionization. The velocity imaging technique was used to monitor the energy distribution of photoelectrons and photoions as a function of the delay time between the pump and the probe pulses. A complex dynamics was revealed, which can be interpreted as a sequence/superposition of elementary processes, one of which is the ejection of barium out of the cluster. The latter has an efficiency, which starts increasing 5 ps after the pump pulse, the largest ejection probability being at 10 ps. The ejection process lasts at a very long time, up to 60 ps. A competing process is the partial solvation of barium in low lying electronic states. Both processes are preceded by a complex electronic relaxation, which is not fully unraveled here, the present paper being the first one in a series.

14.
J Phys Chem A ; 114(18): 5655-65, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20405890

ABSTRACT

In a laser ablation type microreactor followed by supersonic expansion, zirconium atoms have been reacted with methyl fluoride, CH(3)F (MeF), and mixtures of MeF and dimethylether, CH(3)-O-CH(3) (DME) seeded in He. With both mixtures, only a number of simple fluorinated products are formed, and they have been identified by one-photon ionization. All products can be linked to radical reactions either with F atoms, CH(3), or ZrF(1, 2, 3) radicals. No insertion products of the Grignard reagent type, F -Zr-CH(3) could be identified with or in the absence of DME. On the other hand, evidence has been found for the presence of organometallic compounds of the type ZrC(2)H(n=2, 4, 6), which could result from radical attack. Thus, even in conditions where intense solvation is at work, induced by clustering with polar DME molecules, which can act as stabilizing agents, a direct insertion mechanism into the C-F bond involving barrier suppression is not at work in our conditions. The reactivity due to radicals is very effective in this type of reactor, and the products that are efficiently formed can be quickly stabilized in the expansion. The radical attack supersedes, in the case of zirconium solvated by DME, the metastable mechanism with Zr(4d)(3)(5s)(1), that is certainly energetically impossible in the absence of strong reaction barrier suppression by a solvent. High level ab initio calculations performed at the CASPT2 level of theory are used for characterizing the electronic and geometric structure of the inserted products. They also reveal striking features of the reaction mechanism that support the absence of observation of inserted products within solvated clusters of zirconium.

15.
J Chem Phys ; 131(22): 224319, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20001048

ABSTRACT

The 1:1 Mg...1,2-dimethoxyethane (Mg-DXE) complexes are studied experimentally and theoretically. They are generated by a laser ablation source in a supersonic expansion. They are studied spectroscopically by resonance two-photon ionization. Density functional theory/Becke three-dimensional Lee, Yang, and Parr and ab initio calculations using the MOLPRO quantum chemistry package are performed to document their ground and excited states in a series of geometry ranging from monodentate to bidentate ligation of Mg by the O atoms of DXE. An absorption band is observed in the 27 800-30 500 cm(-1) range, which, thanks to the calculations, is attributed to the bidentate complex. The structure of the band is discussed in terms of the excitation of electronic states of the complex correlating adiabatically to the 3s3p (1)P and 3s4s (1)S states of Mg at large separation between Mg and DXE.

16.
J Phys Chem A ; 112(7): 1408-20, 2008 Feb 21.
Article in English | MEDLINE | ID: mdl-18232672

ABSTRACT

The Ca* + CH3F --> CaF* + CH3 reaction was studied both experimentally and theoretically. The reaction was photoinduced in Ca...CH3F complexes, which were illuminated by a tunable laser in the range 18 000-24 000 cm-1. The absorption band that leads to the reaction extends between 19 000 and 23 000 cm-1. It is formed of three broad overlapping structures corresponding to the excitation of different electronic states of the complex. The two structures of lowest energy were considered in detail. They are associated with two series of respectively 2 and 3 molecular states correlating to Ca(4s3d 1D) + CH3F at infinite separation between Ca and CH3F. The assignment of these structures to specific electronic transitions of the complex stemmed from theoretical calculations where the Ca...CH3F complex is described by a linear Ca-F-C backbone. 2D potential energy surfaces were calculated by associating a pseudopotential description of the [Ca2+] and [F7+] cores, a core polarization operator on calcium, an extensive Gaussian basis, and a treatment of the electronic problem at the CI-MRCI level. All the excited levels correlating to the 4s2 1S, 4s3d 1D, and 4s4p 1P levels of Ca in the Ca + CH3F channel were documented in a calculation that explored the rearrangement channels where either Ca + CH3F or CaF + CH3 are formed. Then, wavepacket calculations on the 2D-PES's allowed one to simulate the absorption spectrum of the complex, in an approximation where the various electronic states of the complex are not coupled together. The assignment above stemmed from this. The second outcome of the calculation was that whatever the excited level of the complex that is considered, the reaction has to proceed through energy barriers. The electronic excitation of the complex on the red side of the absorption band does not seem to deposit enough energy in the system to overcome these barriers (even the lowest one) or to stimulate tunneling reactions. An alternative reaction mechanism involving a transfer to triplet PES's is proposed.

17.
J Phys Chem A ; 110(23): 7355-63, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16759123

ABSTRACT

The Ca* + CH3F --> CaF + CH3 reaction was photoinduced in 1:1 Ca...CH3F complexes formed in a supersonic expansion. The transition state of the reaction was explored by monitoring the electronically excited product, CaF, while scanning the laser that turns on the reaction. Moreover, the electronic structure of the Ca...FCH3 system was studied using ab initio methods by associating a pseudopotential description of the [Ca2+] and [F7+] cores, a core polarization operator on calcium, an extensive Gaussian basis and a treatment of the electronic problem at the CCSD(T) (ground state) and RSPT2 (excited states) level. In this contribution we present experimental results for the free complex and a comparison with the results of a previous experiment where the Ca...CH3F complexes are deposited at the surface of large argon clusters. The ab initio calculations allowed an interpretation of the experimental data in terms of two reaction mechanisms, one involving a partial charge transfer state, the other involving the excitation of the C-F stretch in the CH3F moiety prior to charge transfer.

18.
Phys Rev Lett ; 91(10): 103001, 2003 Sep 05.
Article in English | MEDLINE | ID: mdl-14525476

ABSTRACT

A femtosecond pump-probe experiment is performed on tetrakis(dimethylamino)ethylene. The evolution resulting from the pi-pi(*) excitation of the CC double bond corresponds to movement along a single adiabatic potential surface with deformation along several coordinates and passage near a conical intersection. Surprisingly, this movement excites the umbrella mode of the amino groups, resulting in a measurable oscillation regime.

19.
Faraday Discuss ; (118): 209-19; discussion 233-45, 2001.
Article in English | MEDLINE | ID: mdl-11605267

ABSTRACT

Excited state reactions of metals produce electronically excited products efficiently, as revealed by studies performed both in the gas phase and in free Van der Waals complexes. The reaction mechanism is assigned to an excited state charge transfer from the metal to the molecular reactant (i.e. a harpoon mechanism). The present work uses the well established cluster isolated chemical reaction (CICR) technique and addresses these processes when the metal ... molecule Van der Waals pair is deposited at the surface of a large argon cluster. Such work is aimed at investigating the effect of the cluster substrate on the preparation and dynamics of the reaction. We have revisited the pluridimensional character of the harpoon reaction in these systems. More specifically, we studied the reaction of excited calcium with HBr near the calcium resonance line at 422.7 nm, forming CaBr in the A and B states. As in previous Van der Waals experiments, we could explore the dynamics of the reaction by recording action spectra. These spectra exhibit noticeable differences from those observed for unsupported Ca...HBr complexes. In particular the bending movement of the Ca...HBr complex which gives access to the transition state of the reaction is partly hindered by the presence of the argon cluster.

20.
Photochem Photobiol ; 68(2): 150-6, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9723208

ABSTRACT

The photophysics of the fully reduced states of a number of flavins (flavin mononucleotide, flavin adenine dinucleotide and 3-N-methyllumiflavin) and flavoenzymes (glucose oxidase from Aspergillus niger and the flavodehydrogenase component isolated from flavocytochrome b2) was studied using subpicosecond laser excitation at lambda = 312 nm. The prompt transient absorption spectra (measured from 400 to 850 nm) were all closely similar in the case of the free flavins in aqueous solution. The decay of the transient absorbance obeyed biexponential kinetics with a fast component of lifetime ranging from 4 to 130 ps and a slower phase with a lifetime above 1 ns. The spectral structure changed appreciably during the rapid decay phase. In contrast, in the case of the enzymes only a very slight decay was apparent over the probed time interval (1 ns) and the shape of the spectrum remained unchanged. It is proposed that the two transient spectra appearing in the free flavins correspond to two conformations differing by their degree of nonplanarity, whereas in the flavoenzymes only one conformation is possible.


Subject(s)
Flavins/chemistry , Flavins/radiation effects , Aspergillus niger/enzymology , Glucose Oxidase/chemistry , Glucose Oxidase/radiation effects , Kinetics , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/radiation effects , L-Lactate Dehydrogenase (Cytochrome) , Molecular Conformation , Photochemistry , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...