Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 173: 108318, 2024 May.
Article in English | MEDLINE | ID: mdl-38522253

ABSTRACT

Image registration can map the ground truth extent of prostate cancer from histopathology images onto MRI, facilitating the development of machine learning methods for early prostate cancer detection. Here, we present RAdiology PatHology Image Alignment (RAPHIA), an end-to-end pipeline for efficient and accurate registration of MRI and histopathology images. RAPHIA automates several time-consuming manual steps in existing approaches including prostate segmentation, estimation of the rotation angle and horizontal flipping in histopathology images, and estimation of MRI-histopathology slice correspondences. By utilizing deep learning registration networks, RAPHIA substantially reduces computational time. Furthermore, RAPHIA obviates the need for a multimodal image similarity metric by transferring histopathology image representations to MRI image representations and vice versa. With the assistance of RAPHIA, novice users achieved expert-level performance, and their mean error in estimating histopathology rotation angle was reduced by 51% (12 degrees vs 8 degrees), their mean accuracy of estimating histopathology flipping was increased by 5% (95.3% vs 100%), and their mean error in estimating MRI-histopathology slice correspondences was reduced by 45% (1.12 slices vs 0.62 slices). When compared to a recent conventional registration approach and a deep learning registration approach, RAPHIA achieved better mapping of histopathology cancer labels, with an improved mean Dice coefficient of cancer regions outlined on MRI and the deformed histopathology (0.44 vs 0.48 vs 0.50), and a reduced mean per-case processing time (51 vs 11 vs 4.5 min). The improved performance by RAPHIA allows efficient processing of large datasets for the development of machine learning models for prostate cancer detection on MRI. Our code is publicly available at: https://github.com/pimed/RAPHIA.


Subject(s)
Deep Learning , Prostatic Neoplasms , Radiology , Male , Humans , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
2.
Ther Adv Urol ; 14: 17562872221128791, 2022.
Article in English | MEDLINE | ID: mdl-36249889

ABSTRACT

A multitude of studies have explored the role of artificial intelligence (AI) in providing diagnostic support to radiologists, pathologists, and urologists in prostate cancer detection, risk-stratification, and management. This review provides a comprehensive overview of relevant literature regarding the use of AI models in (1) detecting prostate cancer on radiology images (magnetic resonance and ultrasound imaging), (2) detecting prostate cancer on histopathology images of prostate biopsy tissue, and (3) assisting in supporting tasks for prostate cancer detection (prostate gland segmentation, MRI-histopathology registration, MRI-ultrasound registration). We discuss both the potential of these AI models to assist in the clinical workflow of prostate cancer diagnosis, as well as the current limitations including variability in training data sets, algorithms, and evaluation criteria. We also discuss ongoing challenges and what is needed to bridge the gap between academic research on AI for prostate cancer and commercial solutions that improve routine clinical care.

3.
Med Phys ; 49(8): 5160-5181, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35633505

ABSTRACT

BACKGROUND: Prostate cancer remains the second deadliest cancer for American men despite clinical advancements. Currently, magnetic resonance imaging (MRI) is considered the most sensitive non-invasive imaging modality that enables visualization, detection, and localization of prostate cancer, and is increasingly used to guide targeted biopsies for prostate cancer diagnosis. However, its utility remains limited due to high rates of false positives and false negatives as well as low inter-reader agreements. PURPOSE: Machine learning methods to detect and localize cancer on prostate MRI can help standardize radiologist interpretations. However, existing machine learning methods vary not only in model architecture, but also in the ground truth labeling strategies used for model training. We compare different labeling strategies and the effects they have on the performance of different machine learning models for prostate cancer detection on MRI. METHODS: Four different deep learning models (SPCNet, U-Net, branched U-Net, and DeepLabv3+) were trained to detect prostate cancer on MRI using 75 patients with radical prostatectomy, and evaluated using 40 patients with radical prostatectomy and 275 patients with targeted biopsy. Each deep learning model was trained with four different label types: pathology-confirmed radiologist labels, pathologist labels on whole-mount histopathology images, and lesion-level and pixel-level digital pathologist labels (previously validated deep learning algorithm on histopathology images to predict pixel-level Gleason patterns) on whole-mount histopathology images. The pathologist and digital pathologist labels (collectively referred to as pathology labels) were mapped onto pre-operative MRI using an automated MRI-histopathology registration platform. RESULTS: Radiologist labels missed cancers (ROC-AUC: 0.75-0.84), had lower lesion volumes (~68% of pathology lesions), and lower Dice overlaps (0.24-0.28) when compared with pathology labels. Consequently, machine learning models trained with radiologist labels also showed inferior performance compared to models trained with pathology labels. Digital pathologist labels showed high concordance with pathologist labels of cancer (lesion ROC-AUC: 0.97-1, lesion Dice: 0.75-0.93). Machine learning models trained with digital pathologist labels had the highest lesion detection rates in the radical prostatectomy cohort (aggressive lesion ROC-AUC: 0.91-0.94), and had generalizable and comparable performance to pathologist label-trained-models in the targeted biopsy cohort (aggressive lesion ROC-AUC: 0.87-0.88), irrespective of the deep learning architecture. Moreover, machine learning models trained with pixel-level digital pathologist labels were able to selectively identify aggressive and indolent cancer components in mixed lesions on MRI, which is not possible with any human-annotated label type. CONCLUSIONS: Machine learning models for prostate MRI interpretation that are trained with digital pathologist labels showed higher or comparable performance with pathologist label-trained models in both radical prostatectomy and targeted biopsy cohort. Digital pathologist labels can reduce challenges associated with human annotations, including labor, time, inter- and intra-reader variability, and can help bridge the gap between prostate radiology and pathology by enabling the training of reliable machine learning models to detect and localize prostate cancer on MRI.


Subject(s)
Prostatic Neoplasms , Radiology , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Male , Prostate/diagnostic imaging , Prostate/pathology , Prostatectomy , Prostatic Neoplasms/pathology
5.
Med Image Anal ; 75: 102288, 2022 01.
Article in English | MEDLINE | ID: mdl-34784540

ABSTRACT

Automated methods for detecting prostate cancer and distinguishing indolent from aggressive disease on Magnetic Resonance Imaging (MRI) could assist in early diagnosis and treatment planning. Existing automated methods of prostate cancer detection mostly rely on ground truth labels with limited accuracy, ignore disease pathology characteristics observed on resected tissue, and cannot selectively identify aggressive (Gleason Pattern≥4) and indolent (Gleason Pattern=3) cancers when they co-exist in mixed lesions. In this paper, we present a radiology-pathology fusion approach, CorrSigNIA, for the selective identification and localization of indolent and aggressive prostate cancer on MRI. CorrSigNIA uses registered MRI and whole-mount histopathology images from radical prostatectomy patients to derive accurate ground truth labels and learn correlated features between radiology and pathology images. These correlated features are then used in a convolutional neural network architecture to detect and localize normal tissue, indolent cancer, and aggressive cancer on prostate MRI. CorrSigNIA was trained and validated on a dataset of 98 men, including 74 men that underwent radical prostatectomy and 24 men with normal prostate MRI. CorrSigNIA was tested on three independent test sets including 55 men that underwent radical prostatectomy, 275 men that underwent targeted biopsies, and 15 men with normal prostate MRI. CorrSigNIA achieved an accuracy of 80% in distinguishing between men with and without cancer, a lesion-level ROC-AUC of 0.81±0.31 in detecting cancers in both radical prostatectomy and biopsy cohort patients, and lesion-levels ROC-AUCs of 0.82±0.31 and 0.86±0.26 in detecting clinically significant cancers in radical prostatectomy and biopsy cohort patients respectively. CorrSigNIA consistently outperformed other methods across different evaluation metrics and cohorts. In clinical settings, CorrSigNIA may be used in prostate cancer detection as well as in selective identification of indolent and aggressive components of prostate cancer, thereby improving prostate cancer care by helping guide targeted biopsies, reducing unnecessary biopsies, and selecting and planning treatment.


Subject(s)
Deep Learning , Prostatic Neoplasms , Humans , Magnetic Resonance Imaging , Male , Prostate/diagnostic imaging , Prostatectomy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery
6.
Med Phys ; 48(6): 2960-2972, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33760269

ABSTRACT

PURPOSE: While multi-parametric magnetic resonance imaging (MRI) shows great promise in assisting with prostate cancer diagnosis and localization, subtle differences in appearance between cancer and normal tissue lead to many false positive and false negative interpretations by radiologists. We sought to automatically detect aggressive cancer (Gleason pattern ≥ 4) and indolent cancer (Gleason pattern 3) on a per-pixel basis on MRI to facilitate the targeting of aggressive cancer during biopsy. METHODS: We created the Stanford Prostate Cancer Network (SPCNet), a convolutional neural network model, trained to distinguish between aggressive cancer, indolent cancer, and normal tissue on MRI. Ground truth cancer labels were obtained by registering MRI with whole-mount digital histopathology images from patients who underwent radical prostatectomy. Before registration, these histopathology images were automatically annotated to show Gleason patterns on a per-pixel basis. The model was trained on data from 78 patients who underwent radical prostatectomy and 24 patients without prostate cancer. The model was evaluated on a pixel and lesion level in 322 patients, including six patients with normal MRI and no cancer, 23 patients who underwent radical prostatectomy, and 293 patients who underwent biopsy. Moreover, we assessed the ability of our model to detect clinically significant cancer (lesions with an aggressive component) and compared it to the performance of radiologists. RESULTS: Our model detected clinically significant lesions with an area under the receiver operator characteristics curve of 0.75 for radical prostatectomy patients and 0.80 for biopsy patients. Moreover, the model detected up to 18% of lesions missed by radiologists, and overall had a sensitivity and specificity that approached that of radiologists in detecting clinically significant cancer. CONCLUSIONS: Our SPCNet model accurately detected aggressive prostate cancer. Its performance approached that of radiologists, and it helped identify lesions otherwise missed by radiologists. Our model has the potential to assist physicians in specifically targeting the aggressive component of prostate cancers during biopsy or focal treatment.


Subject(s)
Prostatic Neoplasms , Humans , Magnetic Resonance Imaging , Male , Neoplasm Grading , Prostatectomy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery
7.
Med Image Anal ; 69: 101957, 2021 04.
Article in English | MEDLINE | ID: mdl-33550008

ABSTRACT

The use of MRI for prostate cancer diagnosis and treatment is increasing rapidly. However, identifying the presence and extent of cancer on MRI remains challenging, leading to high variability in detection even among expert radiologists. Improvement in cancer detection on MRI is essential to reducing this variability and maximizing the clinical utility of MRI. To date, such improvement has been limited by the lack of accurately labeled MRI datasets. Data from patients who underwent radical prostatectomy enables the spatial alignment of digitized histopathology images of the resected prostate with corresponding pre-surgical MRI. This alignment facilitates the delineation of detailed cancer labels on MRI via the projection of cancer from histopathology images onto MRI. We introduce a framework that performs 3D registration of whole-mount histopathology images to pre-surgical MRI in three steps. First, we developed a novel multi-image super-resolution generative adversarial network (miSRGAN), which learns information useful for 3D registration by producing a reconstructed 3D MRI. Second, we trained the network to learn information between histopathology slices to facilitate the application of 3D registration methods. Third, we registered the reconstructed 3D histopathology volumes to the reconstructed 3D MRI, mapping the extent of cancer from histopathology images onto MRI without the need for slice-to-slice correspondence. When compared to interpolation methods, our super-resolution reconstruction resulted in the highest PSNR relative to clinical 3D MRI (32.15 dB vs 30.16 dB for BSpline interpolation). Moreover, the registration of 3D volumes reconstructed via super-resolution for both MRI and histopathology images showed the best alignment of cancer regions when compared to (1) the state-of-the-art RAPSODI approach, (2) volumes that were not reconstructed, or (3) volumes that were reconstructed using nearest neighbor, linear, or BSpline interpolations. The improved 3D alignment of histopathology images and MRI facilitates the projection of accurate cancer labels on MRI, allowing for the development of improved MRI interpretation schemes and machine learning models to automatically detect cancer on MRI.


Subject(s)
Magnetic Resonance Imaging , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery
8.
Med Image Anal ; 68: 101919, 2021 02.
Article in English | MEDLINE | ID: mdl-33385701

ABSTRACT

Magnetic resonance imaging (MRI) is an increasingly important tool for the diagnosis and treatment of prostate cancer. However, interpretation of MRI suffers from high inter-observer variability across radiologists, thereby contributing to missed clinically significant cancers, overdiagnosed low-risk cancers, and frequent false positives. Interpretation of MRI could be greatly improved by providing radiologists with an answer key that clearly shows cancer locations on MRI. Registration of histopathology images from patients who had radical prostatectomy to pre-operative MRI allows such mapping of ground truth cancer labels onto MRI. However, traditional MRI-histopathology registration approaches are computationally expensive and require careful choices of the cost function and registration hyperparameters. This paper presents ProsRegNet, a deep learning-based pipeline to accelerate and simplify MRI-histopathology image registration in prostate cancer. Our pipeline consists of image preprocessing, estimation of affine and deformable transformations by deep neural networks, and mapping cancer labels from histopathology images onto MRI using estimated transformations. We trained our neural network using MR and histopathology images of 99 patients from our internal cohort (Cohort 1) and evaluated its performance using 53 patients from three different cohorts (an additional 12 from Cohort 1 and 41 from two public cohorts). Results show that our deep learning pipeline has achieved more accurate registration results and is at least 20 times faster than a state-of-the-art registration algorithm. This important advance will provide radiologists with highly accurate prostate MRI answer keys, thereby facilitating improvements in the detection of prostate cancer on MRI. Our code is freely available at https://github.com/pimed//ProsRegNet.


Subject(s)
Deep Learning , Prostatic Neoplasms , Algorithms , Humans , Magnetic Resonance Imaging , Male , Prostatic Neoplasms/diagnostic imaging
9.
Med Phys ; 47(9): 4177-4188, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32564359

ABSTRACT

PURPOSE: Magnetic resonance imaging (MRI) has great potential to improve prostate cancer diagnosis; however, subtle differences between cancer and confounding conditions render prostate MRI interpretation challenging. The tissue collected from patients who undergo radical prostatectomy provides a unique opportunity to correlate histopathology images of the prostate with preoperative MRI to accurately map the extent of cancer from histopathology images onto MRI. We seek to develop an open-source, easy-to-use platform to align presurgical MRI and histopathology images of resected prostates in patients who underwent radical prostatectomy to create accurate cancer labels on MRI. METHODS: Here, we introduce RAdiology Pathology Spatial Open-Source multi-Dimensional Integration (RAPSODI), the first open-source framework for the registration of radiology and pathology images. RAPSODI relies on three steps. First, it creates a three-dimensional (3D) reconstruction of the histopathology specimen as a digital representation of the tissue before gross sectioning. Second, RAPSODI registers corresponding histopathology and MRI slices. Third, the optimized transforms are applied to the cancer regions outlined on the histopathology images to project those labels onto the preoperative MRI. RESULTS: We tested RAPSODI in a phantom study where we simulated various conditions, for example, tissue shrinkage during fixation. Our experiments showed that RAPSODI can reliably correct multiple artifacts. We also evaluated RAPSODI in 157 patients from three institutions that underwent radical prostatectomy and have very different pathology processing and scanning. RAPSODI was evaluated in 907 corresponding histpathology-MRI slices and achieved a Dice coefficient of 0.97 ± 0.01 for the prostate, a Hausdorff distance of 1.99 ± 0.70 mm for the prostate boundary, a urethra deviation of 3.09 ± 1.45 mm, and a landmark deviation of 2.80 ± 0.59 mm between registered histopathology images and MRI. CONCLUSION: Our robust framework successfully mapped the extent of cancer from histopathology slices onto MRI providing labels from training machine learning methods to detect cancer on MRI.


Subject(s)
Prostatic Neoplasms , Radiology , Humans , Magnetic Resonance Imaging , Male , Prostate/diagnostic imaging , Prostate/surgery , Prostatectomy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Seminal Vesicles
SELECTION OF CITATIONS
SEARCH DETAIL
...